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INJECTIVE MODULES UNDER CHANGE OF RINGS1

ERNST SNAPPER

Introduction. Let U and V be rings with unit element and k: U—> V

a ring epimorphism with kernel I. Every F-module (all modules are

left modules) can be regarded as a [/-module under k and hence it

makes sense to ask when a F-module is [/-injective.

For uEU,we denote the left ideal {c\ cE U, cu = 0J by 0:«. The
answer to the above question is simply:

Criterion. A V-module A is U-injective if and only if it satisfies the

following two conditions:

(1) A is V-injective;

(2) If uEI and aEA and (0:u)a = 0, then a = 0. (The cutest way

to put (2) is 0:(0:w)=0 for all uEI-)

We prove the criterion in §1 and make an application of it to G-

modules in §2. (G stands for a finite group.)

1. Proof of the criterion. Let the F-module A be Z7-injective. In

order to prove condition 1, we select a left ideal M of F and a V-

homomorphism g: M—*A. We have to produce an element aEA such

that g(v) =va for all vEM. (See [l, Theorem 3.2, p. 8].) Hereto we

consider the left ideal krl(M) of U and the i/-homomorphism

gk: k~1(M)—*A. Since A is [7-injective, there exists an aEA such that

gk(u) =ua for all uEkrl(M). Letnow vEM. Since k is an epi, v = k(u)

for some uEk~l(M) and, hence, g(v)=gk(u)=ua. The action of U

on A is such that ua = k(u)a=va and condition 1 is proved.
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In order to prove condition 2, we consider a left ideal L of U and

a [7-homomorphism/: L—*A. Again, there exists an aEA such that

f(u)=ua = k(u)a for all uEL. Hence, if uELÍAI, f(u)=0. Suppose

now that mG7 and aG^4 and that (0:u)a = 0. There exists a U-

homomorphism /: (m) —>A, where (u) stands for the left ideal gener-

ated by m and where/(cm) =ca for all cE U. Since/ must be the zero

mapping, a = 0 and condition 2 is proved.

We now assume that the F-module A satisfies conditions 1 and 2,

and show that A is t/-injective. Hereto, we select a left ideal L of U

and a LT-homomorphism/: L—>A. We have to show that there exists

some oG^4 such that f(u)=ua for all uEL. If uEL, obviously

(0:m)/(m)=0 and, hence, condition 2 tells us that f(LC\I) = 0. Since

LC\I is the kernel of the restriction of k to L, there exists a [7-homo-

morphism g: k(L)-^A such thatf = gk. The following diagram will be

helpful.

inclusion inclusion

The square and the triangle both commute. Since k is an epi, k(L)

is a left ideal of V and g is a F-homomorphism. We conclude from

condition 1 that there exists an aG^4 such that g(v)=va for all

aEk(L). Let now uEL. Then f(u) =gk(u) =k(u)a = ua. Done.

Corollary. If I contains a left nondivisor of zero, the only V-module

which is U-infective is the zero module. (uEU is a left nondivisor of zero

if cut^O for all nonzero cE U.)

Proof. IfMG7isa left nondivisor of zero, 0 : u = 0. Hence condition

2 now states that all elements of A are zero. Done.

2. G-modules. Let G be a finite group of order n. The customary

ring epimorphism 8: Z[G]-*Z, where Z is the ring of the rational in-

tegersandZ[G] is the integral group ring of G.isgiven by 8(zi<ri+ • • •

+ZnO =Zi+ • • • +2n; here, G= {au ■ • • , <r„} and Zi, • • • , znEZ.

The kernel of S is denoted by 7 and the left ideal { m | m G Z [G ), uc = 0

for all cG7} by 0:7. The "trace" (7i + • • • +&n is designated by S

and we recall that uS = Su = &(u)S for all uEZ[G]. It follows that
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the principal ideal (5), generated by S, consists of the integral multi-

ples of S.

Proposition. 0:5 = 7 and 0:7= (5). There exist elements uEI such

thatO:u = iS).

Proof. The fact that 0:5 = 7 follows from «5 = S(w)5. We con-

clude from it that (5) C0:7. For each <rEG, 5 — naEl and one checks

easily that 0:(5—mo-) = (5). This also shows that 0:7C(5) and we

are done.

We are now ready to apply the criterion. As customary, G-module

or G-injective means Z[G]-module or Z[G]-injective.

Theorem. Let A be an abelian group on which G acts trivially. Then,

A is G-injective if and only if A is divisible and na^O for all nonzero

aEA.

Proof. To say that G acts trivially on A is the same as to say that

A is considered as a G-module under the epimorphism 8: Z[G]—*Z.

Hence, the criterion may be applied. Condition 1 states that A is Z-

injective, i.e., divisible. (See Corollary 7.3, p. 93 of [2].) We see

from the above proposition that condition 2 now states that, if

Sa = 0 for some aEA, then a = 0. Since Sa = na we are done.

The theorem of this section is not new. It is contained in Rim's

general result on G-injectiveness and G-projectiveness, formulated

as Proposition 2.3 of [3]. The theorem in question is needed for the

author's forthcoming paper on the duality of the cohomology of

permutation representations.
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