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1. In the study of ordinary differential equations and integral

equations, there often occurs inequalities of the form

(1.1) u(t) g w0(t) +  f *(/, s)u(s) ds (t > 0),
J o

where k(t, s) and w0(t) are known non-negative functions and u(t) is

an unknown non-negative function. For examples, one can refer to

Bellman [l, pp. 35 ff.], Coddington and Levinson [2, pp. 37 ff.],

Willett [3], and others. In order to obtain from (1.1) a genuine upper

bound for u(t), i.e., an upper bound independent of u, it seems neces-

sary to separate the variable t in k(t, s) from the integrand involving

u(s). This can be done by assuming that k(t, s) is directly separable,

i.e.,thatthereexistmeasurablefunctionsí)¿(/)andw,(í) (¿ = 1,2, • • ■ ,n)

such that

(1.2) k(t, s) á ¿ Wi(0x(*).
1-1

or by applying Holder's inequality to fl0k(t, s)u(s)ds. The latter is the

so-called LP case and is analyzed in [3].

In §2 of this note we state as Theorem 0 the case when k(t, s) is

directly separable with « = 1. A special case of this result was first

published by Gronwall [4], and a result of nearly the same generality

of Theorem 0 appears in [2, p. 37]. The purpose of this note is to

prove theorems for general n when either k(t, s) or dk(t, s)/dt is

directly separable. Actually we need only that some derivative of

k(t, s) with respect to t be directly separable, but there seems to be

no need to produce the details beyond the first derivative case since

the procedure is clear.

An example illustrating the usefulness of the results for n > 1 is

given in §3.

2. In what follows all functions are assumed to be real-valued and

defined on a given interval I with zero as left endpoint. The domain of

k(t, s) is taken to be the subset of IXI lor which t^s. All functions are

assumed Lebesgue measurable and all functions of one variable are
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assumed non-negative. We call sucha function x = x(i) locally integ-

rable on I if for each tEI, its Lebesgue integral f'0x(s) ds=f'0x is

finite.

Theorem 0. Suppose that

(2.1) u(t) Ú w*(l) + w(l) f v(s)u(s) ds (t G /),
Jo

where vw, vw*, and vu are locally integrable on I. Then

(2.2) «(/) g w*(t) + w(t)(exp   j   vw\( j   iw*J (i 6 /)•

For the proof of Theorem 0, one can refer to [3] or [2, p. 37]. We

state Theorem 0 here in order to simplify the proofs of the following

two theorems :

Theorem 1. Suppose that

(2.3) u(t) é w0(t) + £ Wi(t) f Vi(s)u(s) ds (tEI),
•-i J o

where ViWj (i = l,2, • ■ • ,n;j = 0,1, • • ■ ,n) and ViU (i = 1,2, ■ • • ,n)

are locally integrable on I. Then

(2.4) M  ^  EnWo,

where £,- (i = 0, 1, • • • , n) is defined inductively as the composition of

i-\-l functional operators, i.e., £i = PtP1-_i • • • Do, where

D0w = w,

DjW =w+ (£y-iw,) í exp   I   VjEj-iWjj I   v¡w     (j = 1, 2, • • •, n).

Proof. For n = 1 the theorem reduces to Theorem 0, and hence is

true. Suppose n is given and »>1. The proof is by finite induction.

Assume the following two statements (A) and (B) hold for i = k, where

k is some integer between 0 and n — 1 (0^k = n — l):

(A) EiWj exists and vmEiWj is locally integrable

(/ = i + 1, i + 2, • • ■ , n, 0; m = i + 1, i + 2, ■ ■ ■ , n) ;

(B)

» /» t
u á PtWo +   2  (EiWm) I    vmu.

m—i+1 J 0
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(A) and (B) hold by assumption for i = k = 0, and we will prove that

(A) and (B) hold for i = £4-1 ii k^n — 2 and that the theorem is true

if k = n — l. In either case, the theorem follows.

Let w = EkWj. From the definition of Ek+i, we obtain

(2.6) Ek+iWj = Dk+iw = w + (F¡fcW¡fc+i) I exp   ,    vk+iEkwk+iJ I   vk+iw.

It follows from (A) with i = k and the local integrability of vk+iw0 that

Ek+iWj (j = k + l,k + 2, • ■ ■ ,«, 0) exists and that vmEk+iWj (m = k + \,

k+2, • • • , n;j = k + l, k + 2, •••,«, 0) is locally integrable. Hence,

(A) holds for i = k-\-i, and we may apply Theorem 0 with v=vk+i

to (B) with i = k to obtain

(2.7) m á wo + iEkwk+i) ( exp   j    vk+iEkwk+i) I   vk+iwQ,

where

(2.8)

n /» t

= Ekwo +   2^  iEkwm)  I   vmu if k ^ n — 2,
m=i4-Q J O

*

Wo
m=i+l

= EkWo if k = n — 1.

Substituting from (2.8) for w* in (2.7), rearranging the terms, and

using the fact that /„' vmu is a nondecreasing function of t, we can in

the case k^n — 2 obtain from (2.7) inequality (B) with i = k + l. If

k — n — 1, we can get from (2.7) equation (2.3), which is the conclusion

of the theorem.

In the next theorem we will show how an inequality of the same

form as (2.3) can be produced in the case that kit, s) is differentiable

and dkit, s)/dt rather than kit, s) is directly separable.

Theorem 2. Suppose that inequality (1.1) holds and that dkit, s)/dt

exists in the domain of kit, s) and there

dk "
(2.9) -fti)lZ»M).

dt ,=i

Let rit) be a non-negative measurable function such that

Ht, t) è rit) it E I).

{We are assuming still that all functions of one variable are non-nega-

tived) IfViU and w¡ (t = 1, 2, • • • ,n),r, and rw0 are locally integrable on

I, then
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(2.10) u(t) ^ w0*(t) + ¿ w?(t) f Vi(s)u(s) ds,
i=l •' 0

where

(2.11)

w*(t) = w0(t) +  I   r(s)w0(s) ( exp   I   rjds,

wf(t) =   1   Wi(s) ( exp   I   A ds (i = 1, 2, • • • , n).

Proof. Define a differentiable function B(t) on J by

6(t) =  j   ¿(f, *)«(•*) ¿J-
0

Compute the derivative 0'(t) and then use equation (1.1) to obtain

dk

o

Next, transpose r(t)B(t) and multiply the inequality by exp(—f¿r) to

produce

S m, exp (- £ ,) + (exp (- £ ,)) £  | («,,).(,) *.

Now substitute for ô£(i, s)/dt from (2.9) and integrate between zero

and an arbitrary point of I. Inequality (2.10) follows from the mono-

tonicity of /¿víu (¿ = 1, 2, • • • , n) by substituting for 6(t) in (1.1).

Inequality (2.10) is of the same form as inequality (2.3); hence, if

the integrability assumptions of Theorem 1 are satisfied in this situa-

tion, Theorem 1 can be applied to produce a bound on u(f).

3. As an example illustrating the greater usefulness of Theorems 1

and 2 relative to Theorem 0, consider the inequality

u(t) = / + X2/ |   e-*>u(s) ds+ [ u(s) ds, (t>0).

Here X is a real parameter and the problem is to determine the asymp-

totic behaviour of u as X—>+ oo, in particular, to prove that u = 0(1)

uniformly for t restricted to compact subintervals of [0, +00). We

have
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k{t, s) = X2íe-X'+ 1;

hence, dkit, s)/d£=X2e~x*. The application of Theorem 2 is straight-

forward and leads to the desired result. We could have also put ^i(i)

= Wiit) = 1, w2(f) =t, and v2it) =X2e_Xi and successfully applied Theo-

rem 1. On the other hand, the direct application of Theorem 0 in the

obvious fashion,

kit, s) ^ max(l, X2t)e~u

or

kit, s) á (1 + X2/) max (1, e-x»),

does not produce that u must be bounded as X—> + °°.
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