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The notions of effective inseparability (for pairs of sets) and of

double productivity are defined in [5]. In this paper are considered

some extensions of these notions for sequences of sets, and also cer-

tain alternative formulations of them in the spirit of Mucnik [3].

Let M be a nonempty recursively enumerable (r.e.) set which will

be fixed in each context. By a sequence of sets we mean a sequence of

sets of natural numbers indexed by M; by a disjoint sequence we

mean one whose members are pairwise disjoint. Our suffixes will range

over M, thus for a sequence of sets we shall use a notation such as

\Ax} ; A* will be used to denote the set of numbers which belong to

Ax but not to any other member of the sequence \Ax\. The comple-

ment of a set A will be denoted by A'. We use Vx and Ax as universal

and existential quantifiers over M. Superscripts will range over the

set N of all natural numbers; variables left free should be interpreted

as universally quantified over N, or over M for suffixes.

A sequence of sets {Ax\ is called r.e. if there is a binary r.e. rela-

tion A (x, y) such that

x E M —> {A (x, y) <-» y G Ax).

We may suppose that A(x, y) fails for x(£M, because M is r.e. The

idea of a standard enumeration is developed in [2]; let { Wz}, 2 = 0, 1,

2, • • • be a standard enumeration of the r.e. sets, and let |IFj},

2 = 0, 1, 2, • • • be a standard enumeration of the r.e. sequences of

sets. We choose a particular effective way of simultaneously enumer-

ating all the sets Wx and define

2 Í       I *

Dz— \y\y turns up in Wx before it turns up in any other member

of {if:}},

then we have

D'x Q W'z    and    U D'z = U W'x
x x

and {Dzx\ , z = 0, 1, 2, • • • is a standard enumeration of the standard

class consisting of the disjoint r.e. sequences.

A sequence of sets {A x} is said to be m-reducible to a sequence {Bx}
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if there is a recursive function <p such that

Ax(yE Ax^<b(y) EBX).

We call a sequence {A x} universal (for disjoint sequences) if every dis-

joint r.e. sequence is ra-reducible to Ax.

Smullyan's results pertain to the case M= {0, l}, in which case

the sequences of sets are called pairs of sets.

A sequence {Ax} is called coproductive if there exists a recursive

function a such that

(i) hx(wl n a*,= 0)-* t\x(a(z) g wl u Ax).

Similar definitions have been given by Cleave (definition of creative

sequence, [l, p. 206]) and by Smullyan (definition of doubly produc-

tive, [S, p. 107]). Each of those authors proved the version of the

following theorem corresponding to his definition:

Theorem 1. The sequence \AX\ is coproductive iff it is universal.

Proof. Let a be a recursive function satisfying (1), and let \SX)

be any disjoint r.e. sequence. We define

m,n       (ot(n)    if m E Sx,

x      =     I ^v
\0        otherwise;

by the recursion theorem, in the shape of Corollary 2.2 of [2], there

is a recursive function ß such that

m.ß'm) TIJS(m)

Ix ~   W x        .

It now follows from (1) that

yESx^aß(y) E Ax,

and so \AX\ is universal.

Conversely, suppose that {Ax\ is universal, then it follows by the

recursion theorem that there is a recursive function a such that

(2) «(a) G l£ <-> a(z) E Ax.

For this application we transpose our sequences of sets, which by

convention are here indexed by M, into sequences of subsets of M

indexed by N; we then apply Corollary 2.2 of [2] again with © = ©m-

From (2) and the definition of Dx the truth of (1) follows easily. This

completes the proof.

If M has cardinality > 1 and if the sequence {Ax} is r.e., then the
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condition (1) can be varied in several ways so that it remains equiva-

lent to universality. For instance, an r.e. sequence {Ax} is called

effectively inseparable if there is a recursive function a such that

hxl\y(wlr\A*x = 0 A(x9¿y-+:Wlr\WlQ[JtAtAW*x^Av))
(3)

-*hx(a(z)$.Wx).

This generalizes Smullyan's definition, [5, p. 120]. Following Smullyan

we show that effective inseparability implies coproductiveness, the

converse being immediate. Assume therefore that a is a recursive

function satisfying (3) and define

fx= [y\yE d'xV Vw(w 7* x A y E Aw)\.

Since {Ax} is assumed r.e., the relation yETx between x, y, z is r.e.,

and so there exists a recursive function ß such that T*x = Wx®. Fur-

ther, if the l.h.s. of (1) holds, then the l.h.s. of (3) holds with z re-

placed by ß(z). Hence we have

¡\x(aß(z) G WÍM)

However, assuming that the cardinality of M is > 1, we have

U WT = U (Wl W Ax).
X X

Thus, if the l.h.s. of (1) holds, the r.h.s. of (1) holds with a replaced

by aß. We have proved

Lemma 1. An r.e. sequence is coproduclive iff it is effectively insepara-

ble, provided that M has cardinality > 1.

There are other ways in which we can frame a condition equivalent

to universality. We can write 'D' for 'W throughout (1). If {Ax\ is

r.e. and the cardinality of if is > 1, we can clearly omit the final Ax

from (1). Further, in each variation we only require a partial recur-

sive (p.r.) and defined at least when the l.h.s. of the relevant implica-

tion holds.

In [3] Mucnik proved that an r.e. set C is complete if there is a

recursive function a such that

W U C = N -» a(z) EW°r\C.

The author has noticed that this result and its proof can be obtained

by taking complements in the earlier result of Myhill that a creative

set with recursive productive function is complete. In fact, the dual-
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ity can be carried a little further: call a singulary function <j> dual p.r.

if the relation <£(x) 9ey is r.e., then we have

Lemma 2. The set A is universal iff there is a dual p.r. function a

such that

W°<UC = N^> iaiz) defined A a(«) G W*C\A).

Here 'universal' means universal as a sequence of length one, and the

proof of the lemma can be got from that of our next theorem.

The problem naturally arises of finding a dual formulation of

Theorem 1 ; this is not trivial because in Theorem 1 we are no longer

dealing with sets but with sequences. We propose as dual to (1) the

implication

(10 Vx(IF¡ U Ax = N) -» Vxictiz) E W'x H A*x).

We now have as the dual of Theorem 1 :

Theorem 1'. The sequence {Ax} is universal iff there is a recursive

function a satisfying (1').

Carrying the proof of the 'if part over from Theorem 1, the key

step is the definition:

».»_    ÍN - {«(»)}     if w G Sx,

{N   otherwise.

The 'only if part follows straight from (2) as before.

A sequence {Ex} is called dual disjoint if the sequence {Ex } is dis-

joint. Notice that (1') is only required for z such that {W\} is dual

disjoint. There seems to be no perfect analogy to (3), the nearest we

can get is

Vx(R^ U Ax= N) A A*Ay(* * y -» w'x 2 Av)

:-^\/xiaiz)EWlr\Ax).

This is shown equivalent to (1') for an r.e. sequence {Ax} by an argu-

ment similar to that used for Lemma 1. Also, we can substitute 'dual

p.r. function' for 'recursive function' in Theorem 1' (or its variant)

provided that we add the conjunctand 'aiz) defined' on the r.h.s.

of the corresponding implication.

It is interesting to note that, when {Ax} is r.e. and the cardinality

of M is > 1, then the initial Ax can be omitted from (1') just as the

final Ax can be omitted from (1). We alter the definition of Txn'n to
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m,n=   (N   HmESxy\ly(y7ixf\a(n)EAy),

\N — \a(n)\    otherwise.

This modification is required so that we can prove the implication

Ax^GS*)—>l\x(aß(m)($:Ax), where ß is defined as in Theorem 1.

This alteration enables us to prove the 'if part of Theorem 1' when

Ax is omitted from (1'). Since the omission weakens (1'), the 'only if

part is immediate.

There is one result of Mucnik (Theorem 5 of [3]) which is not in-

cluded in any of the results given above. We now prove two theorems

from both of which Mucnik's theorem can be obtained by taking

M— JO, l} and {Ax} to be a disjoint r.e. pair.

Theorem 2. Let M have cardinality >1. ^4ra r.e. disjoint sequence

\AX} is universal iff there is a recursive function a such that

■ (4)      \J Wx = N A A*Ay(x ̂^ W'x 2 4»):-» Ax(a(3) G w'x).
X

Proof. For the 'if part suppose that a is a recursive function satis-

fying (4) and that {Sx} is any disjoint r.e. sequence. We now use

precisely the same construction for Tx'n which we used to justify the

omission of Ax from (1'). We then apply the recursion theorem as in

Theorem 1 to obtain a recursive function ß such that

If aß(m)EAx, then the l.h.s. of (4) is satisfied for z=ß(m), whence

aß(m) is in every member of {TFf(m)}, whence mESx from the defini-

tion of IJ,ß(m). Conversely, if mESx, then the l.h.s. of (4) again holds

for z = ß(m), whence aß(m) is in every member of { W, }, whence

aß(m) is in A, from the definition of T^«"1'.

For the 'only if part we use (2) once again. If {Wx\ covers N, so

does {D%\. Hence a(z) is in Dl for some i, and from (2) we have

a(z)EAi. If the second conjunctand on the l.h.s. of (4) holds (as

well as the first), then a(z)EWzv for all y, yy^i. Thus (4) holds for the

function a which satisfies (2).

Theorem 3. Let M have finite cardinality >1. An r.e. disjoint se-

quence \Ax] is universal iff there is a recursive function a such that

(5)       {W'x] is dual disjoint A kx(w'x D Ax) : -> hx(a(z) E w'x).

Proof. Let a be a recursive function satisfying (5) and let {Sx} be

a disjoint r.e. sequence. Let p be a function which permutes the mem-

bers of M cyclically. Given m, n, we carry out simultaneously two
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searches: in search 1 we seek a number x such that mESx, in search

2 we seek a number x such that a(n)EAx. The first number found in

search 1 will be denoted by k(ot), the first number found in search 2

will be denoted by X(w). We define T?-n by

Tx    =

'N if search 1 finishes first and x?±K(m), or if search 2 finishes

first and x¿¿ p\(n),

(N — {a(n)}) \J Ax otherwise.

We now define ß as before and as before we can show that aß reduces

[Sx] to \AX).

For the 'only if part, define

2 Í       1 • *        • z 1

Ex = \y\ y turns up in each Wt with t 9¿ x before it turns up in Wx\,

where it is not required that y should turn up in Wx for y to belong

to Ezx. Then, if {Wx} is a dual disjoint sequence, \Ezx) is a disjoint

sequence covering N. By an application of the recursion theorem

similar to that which yields (2), we have, assuming that \AX\ is

universal, a recursive function a such that

a(z) E Ez <-> a(z) E Ax.

From this the implication (5) follows easily. This completes the proof

of the theorem.

We can counterexample this theorem for M infinite by supposing

that a is a recursive function satisfying (5) for a disjoint r.e. sequence

{^4i|. We construct a sequence { T2} as follows, supposing without

loss of generality that M = N. We begin enumerating N— {a(n)} in

Tl and N in each of the remaining sets of {T!¡}. However, if a(n)

turns up in A0, we let m be the least number such that a(n) has not

yet been enumerated in T^. We now complete the enumeration so

that Tn — N— {a(n)\ and so that TX=N for x^m. We can arrange

the details so that xETz is an r.e. relation between x, y, z. This en-

titles us to use the recursion theorem to obtain a number e such that

Tex=Wex. Considering (5) for z = e we obtain a contradiction, because

the l.h.s. of the implication is satisfied but not the r.h.s.

We can also show that there can be no dual p.r. function a, defined

at least when the l.h.s. of (5) holds, which satisfies (5). We use the

same technique coupled with the priority ordering method ascribed

to Friedberg and Mucnik. For, if a is dual p.r., we can effectively

enumerate all numbers 9^a(n). Thus in the construction of { 7^} we

first adopt 0 as a provisional a(n); if this becomes untenable, i.e., if
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we enumerate 0 as ^a(w), then we adopt the least possible number

as provisional a(w), and so on. For each provisional a(w) we perform

a construction similar to the above, abandoning it for a new construc-

tion if a new a(w) has to be adopted. In fixing the details we have

only to ensure that, if a(w) is undefined, then Tx=N for all x. It

is vital to both constructions that after any particular step only a

finite number of numbers will have been enumerated in l)x T".

Theorems 2 and 3 hold for nondisjoint r.e. sequences \Ax] pro-

vided that for the right hand sides of (4) and (5) we substitute

AxAy(a(z) G W'x A (x ^ y -> aiz) G Ax C\ Au)).

Further, in each of Theorems 2 and 3 we can substitute 'dual p.r.

function' for 'recursive function' if we add 'aiz) defined' on the r.h.s.

of (4) and (5).

In conclusion, we remark that the duality notion noted above may

well prove interesting in other contexts. For instance, we can consider

sets retraced by dual p.r. functions, and dual recursive equivalence

types.
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