A NOTE ON SEMIGROUPS OF OPERATORS ON A LOCALLY CONVEX SPACE

K. SINGBAL-VEDAK

- 1. The object of this note is to generalize certain results in the theory of semigroups of continuous linear operators on a Banach space to the case where, instead of a Banach space, we consider a locally convex space. A family $\{T(\xi)\}_{\xi>0}$ of linear operators on a vector space is called a semigroup if $T(\xi+\eta)=T(\xi)\circ T(\eta)$, ξ , $\eta\in(0, \infty)$. E. Hille [4] and N. Dunford [2] have proved that if $\{T(\xi)\}_{\xi>0}$ is a semigroup of bounded linear operators on a Banach space E such that for every $x\in E$, $\xi\to T(\xi)x$ is a measurable function from $(0, \infty)$ into E and such that $\|T(\xi)\|_{\delta\leq\xi\leq1/\delta}$ is bounded for every $\delta>0(\delta<1)$, then $\xi\to T(\xi)x$ is a continuous function from $(0, \infty)$ into E for $x\in E$. Proposition 2 is an analogue of this result while Propositions 3 and 4 are analogues of results due to R. S. Phillips [5] and P. Lax, respectively.
- 2. DEFINITION 1. Let E be a locally convex space, S a set and \mathfrak{M} a σ -ring of "measurable" subsets of S. A function $x: S \to E$ ($\xi \to x(\xi)$) is called measurable if it is the limit, almost everywhere, of a sequence of countably valued functions. (A function is said to be countably valued if its range is countable and it takes each value different from zero on a measurable set.)

REMARK. If $x(\xi)$ is a measurable E-valued function and p is any continuous seminorm on E, then $p(x(\xi))$ is a real-valued measurable function on S.

PROPOSITION 1. Let $S = (0, \infty)$ with \mathfrak{M} the σ -ring of Lebesgue measurable subsets of $(0, \infty)$ and $x(\sigma)$ be a measurable function from $(0, \infty)$ into E. Then for any continuous seminorm q on E, there exists a sequence $\{x_n(\sigma)\}_{n=1,2,\ldots}$ of countably valued functions such that $q(x(\sigma)-x_n(\sigma)) \to 0$ as $n\to\infty$ uniformly for σ outside a set of measure zero.

We shall prove the proposition under a weaker hypothesis, viz., that $x(\sigma)$ is weakly measurable (i.e., for every continuous linear functional x' on $E\langle x(\sigma), x'\rangle$ is a measurable function of σ on $(0, \infty)$) and that $x(\sigma)$ is almost separably valued (i.e., $x(\sigma)$ belongs to a separable subspace of E almost everywhere).

We may suppose that the range of $x(\sigma)$ is contained in a separable subspace L of E and find a sequence $\{x_n(\sigma)\}_{n\geq 1}$ of countably valued

functions such that $q(x_n(\sigma) - x(\sigma))$ tends to zero as n tends to infinity uniformly for σ in $(0, \infty)$. Let \tilde{L} denote the quotient space of L, on which q defines a norm \tilde{q} . The completion $\tilde{L} \cap$ of \tilde{L} is a separable Banach space. Hence its conjugate space $(\tilde{L} \cap)'$ contains a sequence $\{y_n^*\}_{n=1,2,\cdots}$ such that

$$\tilde{q}(\tilde{x}) = \sup_{n} |\langle \tilde{x}, y_n^* \rangle| \text{ for } \tilde{x} \in \tilde{L}^{\hat{n}}.$$

Now $x \rightarrow y_n^*(\bar{x})$, where \bar{x} is the image of x by the quotient map $L \rightarrow \bar{L}$, is a continuous linear functional on L. By the Hanh-Banach theorem, there exists a continuous linear functional x_n' on E such that

$$\langle \bar{x}, y_n^* \rangle = \langle x, x_n' \rangle$$
 for $x \in L$ and $n = 1, 2, \cdots$.

Now $q(x(\sigma)) = \tilde{q}[(x(\sigma))^{\sim}] = \sup_n |\langle x(\sigma), x_n' \rangle|$ is measurable as $\langle x(\sigma), x_n' \rangle$ is measurable for $n = 1, 2, \cdots$. Similarly, for any $a \in L$, $q(x(\sigma) - a)$ is a measurable function. Let $A = \{\sigma | q(x(\sigma)) > 0\}$. If $\{a_i\}$ is a sequence dense in L and $A_i = A \cap \{\sigma | q(x(\sigma) - a_i)\} < 1/n$ then $A = \bigcup_{i=1}^{\infty} A_i$. Let $B_1 = A_1$, $B_j = A_j - \bigcup_{i \le j-1} B_i$ (j > 1). The B_i are disjoint measurable and $\bigcup B_i = \bigcup A_i = A$.

Let

$$x_n(\sigma) = a_i \text{ for } \sigma \in B_i,$$

= 0 for $\sigma \notin A$.

Then $q(x(\sigma)-x_n(\sigma))<1/n$ for all σ so that $q(x(\sigma)-x_n(\sigma))\to 0$ as $n\to\infty$ uniformly for σ in $(0, \infty)$.

DEFINITION 2. A semigroup of operators on a locally convex space E is said to be measurable if, for $x \in E$, the function $\xi \to T(\xi)x$ is measurable from $(0, \infty)$ to E.

PROPOSITION 2. If $\{T(\xi)\}_{\xi>0}$ is a measurable semigroup of continuous linear operators in a locally convex space E such that, for every $[\alpha, \beta] \subset (0, \infty)$, $\{T(\xi)\}_{\alpha \le \xi \le \beta}$ is an equicontinuous family of operators, then $\xi \to T(\xi)x$ is continuous for every $x \in E$.

PROOF. We have to show that for $\xi \in (0, \infty)$ and $x \in E$,

(1)
$$T(\xi \pm \eta)x - T(\xi)x \to 0 \text{ in } E \text{ as } \eta \to 0.$$

Let $0 < \alpha < \beta < \xi$. As $\{T(\tau)\}_{\tau \in [\alpha,\beta]}$ is an equicontinuous set, given any continuous seminorm p on E, there exists a continuous seminorm q on E and k > 0 such that

(2)
$$p(T(\tau)y) \leq kq(y)$$
 for $\alpha \leq \tau \leq \beta$ and $y \in E$.

Let $\eta_0 > 0$ be such that $\alpha - \eta > 0$ and $\beta < \xi - \eta$ for $0 < \eta < \eta_0$. By (2), we have

(3)
$$p(T(\xi \pm \eta) - T(\xi)x) = p(T(\tau)[T(\xi \pm \eta - \tau)x - T(\xi - \tau)x])$$

$$\leq kq(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x).$$

As $\{T(\xi \pm \eta - \tau)\}_{\tau \in [\alpha,\beta]}$ and $\{T(\xi - \tau)\}_{\tau \in [\alpha,\beta]}$ are equicontinuous sets, $\{T(\xi \pm \eta - \tau)x\}_{\tau \in [\alpha,\beta]}$ and $\{T(\xi - \tau)x\}_{\tau \in [\alpha,\beta]}$ are bounded subsets of E so that $q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x)$ is a bounded measurable function of τ in $[\alpha,\beta]$. Integrating (3) with respect to τ from α to β we get

$$(\beta - \alpha)p(T(\xi \pm \eta)x - T(\xi)x)$$

$$\leq k \int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x) d\tau.$$

The integral on the right-hand side tends to zero with η if we show that, for given $\epsilon > 0$, there exists a continuous *E*-valued function $f_{\epsilon}(\tau)$ such that

(5)
$$\int_{\tau-\tau_0}^{\beta+\eta_0} q(T(\xi-\tau)x-f_{\epsilon}(\tau)) d\tau < \epsilon.$$

For then

$$\int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - T(\xi - \tau)x) d\tau$$

$$\leq \int_{\alpha}^{\beta} q(T(\xi \pm \eta - \tau)x - f_{\epsilon}(\tau \mp \eta)) d\tau + \int_{\alpha}^{\beta} q(f_{\epsilon}(\tau \mp \eta) - f_{\epsilon}(\tau)) d\tau$$

$$+ \int_{\alpha}^{\beta} q(f_{\epsilon}(\tau) - T(\xi - \tau)x) d\tau$$

and the first and the third integral are each majorised by ϵ and the second integral tends to zero with η since $f_{\epsilon}(\tau)$ is continuous. Now $h(\tau) = T(\xi - \tau)x$ being measurable from proposition (1), it follows that, given $\epsilon > 0$, there exists a countably valued function $x(\tau)$ such that $\int_{\alpha-\eta_0}^{\beta+\eta_0} q(h(\tau)-x(\tau)) d\tau < \epsilon/3$. Let $x(\tau) = \sum_{i=1}^{\infty} a_i \chi_{A_i}$, where $a_i \in E$ and χ_{A_i} are characteristic functions of disjoint measurable sets A_i contained in $[\alpha-\eta_0, \beta+\eta_0]$. Then we can choose m such that for $y(\tau) = \sum_{i=1}^{m} a_i \chi_{A_i}$, $\int_{\alpha-\eta_0}^{\beta+\eta_0} q(x(\tau)-y(\tau)) d\tau < \epsilon/3$. Let $q(y(\tau)) < M$. Given $\delta > 0$ we can find compact sets $K_i \subset A_i$ and open sets $O_i \supset A_i$ $(i=1, 2, \cdots, m)$ such that $\sum_{i=1}^{m} m(O_i - K_i) < \delta$ (m) being Lebesgue measure). For every i there exists a continuous function $g_i(\tau)$, $0 \le g_i(\tau) \le 1$, such that $g_i(\tau)$ equals 1 on K_i and 0 outside O_i . If $g(\tau) = \sum_{i=1}^{m} a_i g_i(\tau)$, then $q(g(\tau)) < mM$ and $q(\tau) = q(\tau)$ for $\tau \in \bigcup_{i=1}^{m} (O_i - K_i)$ so that $\int_{\alpha-\eta_0}^{\beta+\eta_0} q(y(\tau) - q(\tau)) d\tau < 2mM\delta < \epsilon/3$ for $\delta < \epsilon/6mM$. Taking $f_{\epsilon}(\tau) = g(\tau)$, (5) is satisfied.

REMARK 1. Proposition 2 remains true if instead of the hypothesis that $\xi \to T(\xi)x$ are E-valued measurable functions for $x \in E$, we have the weaker hypothesis that these functions are weakly measurable and almost separably valued. For, from the proof of Proposition 1, given $\epsilon > 0$, there exists a countably valued function $x(\tau)$ such that $\int_{\alpha-\eta_0}^{\beta+\eta_0} q \left[h(\tau)x - x(\tau)\right] d\tau < \epsilon/3$ and the proof is completed by the same method as above.

REMARK 2. The converse of Proposition 2, viz., the statement that "If $\{T(\xi)\}_{\xi>0}$ is a semigroup such that $\xi \to T(\xi)x$ are continuous functions for $x \in E$, then $\{T(\xi)\}_{\xi>0}$ is a measurable semi-group such that for every $[\alpha, \beta] \subset (0, \infty)$, $\{T(\xi)\}_{\xi \in [\alpha, \beta]}$ is an equicontinuous set of maps of E into E" is true if E is barrelled (tonnelé) or is the strong dual of a metrisable locally convex space. For, if $\xi \rightarrow T(\xi)x$ is continuous, then it is measurable and maps the compact set $[\alpha, \beta] \subset (0, \infty)$ onto a compact subset of E. Thus $\{T(\xi)\}_{\alpha \leq \xi \leq \beta}$ is compact in $\mathfrak{L}_{\mathfrak{s}}(E,E)$, the space of linear continuous maps of E into E furnished with the topology of simple convergence, and therefore is a closed bounded subset of $\mathfrak{L}_s(E, E)$. If E is barrelled, this implies that $\{T(\xi)\}_{\xi\in[\alpha,\beta]}$ is equicontinuous. If E is the strong dual of a metrisable space, let $(\xi_n)_{n=1,2,\ldots}$ denote the sequence of rationals in $[\alpha, \beta]$. Then $\{T(\xi_n)\}_{n=1,2,\ldots}$ being a subset of $\{T(\xi)\}_{\alpha\leq\xi\leq\beta}$ is bounded in $\mathfrak{L}_s(E,E)$ and is therefore equicontinuous [3, Proposition 1, p. 62]. Hence its closure in $\mathfrak{L}_{\mathfrak{s}}(E, E)$ is equicontinuous. Now, for any $\sigma \in [\alpha, \beta]$, there exists a subsequence (ξ_{n_k}) of (ξ_n) such that $\xi_{n_k} \to \sigma$ as $k \to \infty$, so that $T(\sigma)x = \lim_{k \to \infty} T(\xi_{n_k})x$ for every $x \in E$. Thus $\{T(\xi)\}_{\alpha \le \xi \le \beta}$ is the closure of $\{T(\xi_n)\}_{n=1,2,\ldots}$ in $\mathfrak{L}_{\mathfrak{s}}(E,E)$ which is equicontinuous.

PROPOSITION 3. Let $\{T(\xi)\}_{\xi>0}$ be a measurable semigroup of continuous linear operators in a Fréchet space E. Then for any $[\alpha, \beta] \subset (0, \infty)$,

$$\{T(\xi)\}_{\alpha \le \xi \le \beta}$$

is an equicontinuous set of maps of E into E.

PROOF. Let $\{p_n\}$ be a sequence or seminorms on E defining the topology of E. Since E is Fréchet, it is sufficient to prove that $\{T(\xi)x\}_{\xi\in[\alpha,\beta]}$ is bounded in E for any fixed $x\in E$. If this is not true, there exists an $x\in E$ and an integer i_0 and a sequence $\{\xi_n\}_{n=1,2,\ldots}$ tending to a real number γ where ξ_n , $\gamma\in[\alpha,\beta]$, such that

$$p_{i_0}(T(\xi_n)x) \ge n$$
 for all n .

Let $\{F_i\}_{i=1,2,...}$ be a sequence of measurable subsets of $(0, \gamma]$ such that

- (i) $F_{i+1} \subset F_i$,
- (ii) the measure $m(F_i)$ of $F_i > \gamma/2 + \gamma/3i$,
- (iii) the measurable function $p_i(T(\xi)x)$ is bounded on F_i by M_i , say.

Clearly such a sequence exists and $F = \bigcap_{i=1}^{\infty} F_i$ is measurable with $m(F) \ge \gamma/2$ and $p_i \{ T(\xi)x \} \le M_i$ for $\xi \in F$, and $i = 1, 2, \dots$, i.e., $\{ T(\xi)x \}_{\xi \in F}$ is a bounded subset of E.

The sets

$$A_n = \{ \xi_n - \eta \mid \eta \in F \cap (0, \xi_n) \}, \quad n = 1, 2, \cdots$$

are measurable and

(1)
$$m(A_n) \ge \frac{\gamma}{4}$$
 for $n \ge N$, say.

For $\eta \in F \cap (0, \xi_n)$,

$$n = p_{i_0}[T(\xi_n)x] \leq p_{i_0}[T(\xi_n - \eta)T(\eta)x].$$

Let $\sigma \in A_n$ be arbitrary. Then

$$\sigma = \xi_n - \eta$$
 for some $\eta \in F \cap (0, \xi_n)$,

so that

(2)
$$p_{i_0}[T(\sigma)T(\eta)x] \geq n.$$

Let $A = \limsup_{n \to \infty} A_n$. Then $m(A) \ge \gamma/4$ by (1). For $\sigma_0 \in A$, p_{i_0} is unbounded on $T(\sigma_0) \left[\left\{ T(\eta) x \right\}_{\eta \in F} \right]$ by (2), i.e., $T(\sigma_0) \left[\left\{ T(\eta) x \right\}_{\eta \in F} \right]$ is not a bounded subset of E. This is a contradiction since $T(\sigma_0)$ is a continuous linear map of E into E and $\left\{ T(\eta) x \right\}_{\eta \in F}$ is a bounded set in E.

Combining Propositions 2 and 3 we have the

THEOREM. Every measurable semigroup of continuous linear operators on a Fréchet space is a continuous function from $(0, \infty)$ into the space of continuous linear maps of E into E furnished with the topology of simple convergence.

3. Proposition 4. Let $\{T(\xi)\}_{\xi>0}$ be a measurable semigroup of continuous linear operators on a locally convex space E such that $\{T(\xi)\}_{\alpha \le \xi \le \beta}$ is an equicontinuous family for every $[\alpha, \beta] \subset (0, \infty)$ and such that for some $\xi_0>0$, $T(\xi_0)$ is a compact operator on E. Then, for any $a>\xi_0$. T(a) is a compact operator and $\xi\to T(\xi)$ is a continuous mapping of (a, ∞) into $\mathfrak{L}_{\mathfrak{S}}(E, E)$ where $\mathfrak{L}_{\mathfrak{S}}(E, E)$ is the space of continuous linear maps of E into E furnished with the topology of uniform convergence on bounded subsets of E.

PROOF. Let $b>a>\xi_0$ and let B be a bounded subset of E, V a neighbourhood of 0 in E and

$$W(B, V) = \{ u \in \mathfrak{L}_{\mathfrak{S}}(E, E) \mid u(B) \subset V \}.$$

We shall show that there exists $\delta > 0$ such that

$$T(\xi + \eta) - T(\xi) \in W(B, V)$$

for $|\eta| < \delta$, $a < \xi < b$, $a < \xi + \eta < b$.

As the sets $\{W(B, V)\}$, where B is a bounded subset of E and V is a neighbourhood of 0 in E, form a fundamental system of neighbourhoods of zero in $\Re(E, E)$, this will prove that $T(\xi+\eta)-T(\xi)\to 0$ in $\Re(E, E)$ as $\eta\to 0$. Let V_1 be a neighbourhood of 0 in E such that

$$(1) V_1 + V_1 + V_1 \subset V.$$

Let V_2 be a neighbourhood of 0 in E such that

$$(2) V_2 \subset V_1$$

and

(3)
$$T(\xi - \xi_0)V_2 \subset V_1 \text{ for } a \leq \xi \leq b.$$

This is possible since $\{T(\xi-\xi_0)\}_{a\leq\xi\leq b}$ is an equicontinuous family of maps of E into E.

Now, $T(\xi_0)$ being a compact operator, there exists a neighbourhood U of 0 such that $T(\xi_0)U$ is a relatively compact subset of E. The bounded subset E of E is absorbed by E, so that E0, E1 is also relatively compact. Given a neighbourhood E2 of 0 in E3, there exist E1, E2, E3 such that

$$T(\xi_0)B\subset \bigcup_{k=1}^n \big\{T(\xi_0)x_k+V_2\big\},\,$$

i.e., for any $x \in B$, there exists an x_k such that

$$(4) T(\xi_0)x - T(\xi_0)x_k \in V_2.$$

By Proposition 1, for any $x \in E$, $\xi \to T(\xi)x$ is a continuous function from $(0, \infty)$ into E. In particular, $\xi \to T(\xi)x_k$ are continuous functions for $k=1, 2, \cdots, n$. We can, therefore, find $\delta > 0$ such that, for $k=1, 2, \cdots, n$,

$$T(\xi + \eta)x_k - T(\xi)x_k \in V_2$$
 if $|\eta| < \delta, a \leq \xi, \xi + \eta \leq b$.

Let $x \in B$ and x_k be as in (4). Then

$$T(\xi + \eta)x - T(\xi)x = T(\xi + \eta)x - T(\xi + \eta)x_k + T(\xi + \eta)x_k - T(\xi)x_k + T(\xi)x_k - T(\xi)x$$

$$= T(\xi + \eta - \xi_0)[T(\xi_0)x - T(\xi_0)x_k] + [T(\xi + \eta)x_k - T(\xi)x_k] + T(\xi - \xi_0)[T(\xi_0)x_k - T(\xi_0)x]$$

$$\in T(\xi + \eta - \xi_0)V_2 + V_2 + T(\xi - \xi_0)V_2$$

$$\subset V_1 + V_1 + V_1 \subset V;$$

i.e., $[T(\xi+\eta)-T(\xi)]B \subset V$ for $|\eta| < \delta$, $a \le \xi + \eta \le b$, $\xi_0 < a$. This proves the required continuity of the function $\xi \to T(\xi)$.

That $T(\xi)$ is compact for $\xi > \xi_0$ follows from the fact $T(\xi_0)$ is a compact operator and $T(\xi) = T(\xi - \xi_0) T(\xi_0)$ where $T(\xi - \xi_0)$ is a continuous linear map of E into E.

REFERENCES

- 1. N. Bourbaki, Espaces vectoriels topologiques, Hermann, Paris, 1955.
- 2. N. Dunford, On one parameter groups of linear transformations, Ann. of Math. (2) 39 (1938), 567-573.
- 3. A. Grothendieck, Sur les espaces (F) et (DF), Summa Brasil. Math. 3 (1954), 57-121.
- 4. E. Hille, Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ. Vol. 31, Amer. Math. Soc., Providence, R. I., 1948.
- 5. R. S. Phillips, On one parameter semi-groups of linear transformations, Proc. Amer. Math. Soc. 2 (1951), 234-237.

TATA INSTITUTE OF FUNDAMENTAL RESEARCH, BOMBAY, INDIA

ON RECURSIVELY DEFINED ORTHOGONAL POLYNOMIALS¹

T. S. CHIHARA

1. Introduction. Consider a set $\{P_n(x)\}$ of orthogonal polynomials defined by the classical recurrence formula,

(1.1)
$$P_n(x) = (x - c_n)P_{n-1}(x) - \lambda_n P_{n-2}(x) \qquad (n = 1, 2, 3, \cdots),$$

$$P_{-1}(x) = 0, \qquad P_0(x) = 1, \qquad c_n \text{ real}, \qquad \lambda_{n+1} > 0.$$

In [2], the author initiated a study of (1.1) based on the chain sequences of Wall [6], the fundamental relation being that the zeros

Presented to the Society, January 26, 1964; received by the editors October 10, 1963.

¹ This work was supported by the National Science Foundation (NSF-GP 1230).