
DIFFERENTIAL OPERATORS APPROXIMATELY OF THE
FORM (í-(í/Wix))d/dx)n

ERLING WILLIAM CHAMBERLAIN1

1. Introduction. This paper studies the factorization of certain

homogeneous linear differential operators L = 2Z?_0 o»(x)P' into prod-

ucts &o(x)(l—&i(x)P) • • • (1—6„(x)P) of first-order factors, the func-

tions Ci and bi discussed in terms of asymptotic behavior as x tends

to infinity in the complex plane. Among other results, we obtain in-

formation about the asymptotic behavior of the solutions of P(y) =0.

Speaking loosely, the operators P are assumed to be expressible in the

form P = (1 - IF-1P)» + Pn(l - IF-1P)"+P„_i(l-IF-1P)n-1+ • • •

+Pi(l —IF-1P)+P0 where each P¿—»0 as x—>oo, while fx\W—>c° as

x—»oo. In the factorization L — boi^—biD) ■ ■ ■ (1— bnD) we obtain,

it will be the case that &0—*1 and ¿¿/(IF-1)—»1 (¿>0) as x—+oo.

We use Strodt's asymptotic relations -<, ~, «, referring to a sort

of sectorial neighborhood system of infinity in the complex plane.

This system is denoted Fia, ß). (For an index of notation and termi-

nology, see [2, Part IX, pp. 105-107].) Roughly, /-<1 means /->0;

f<g means //g->0; /~g means //g—>1, or (//g)-l-<l; and /«g

means fig—»c, where c is a nonzero complex constant. Logarithmic

monomials are functions of the form cxmo(log x)mi(log2 «)"•«•••

(log, x)mi, with c complex and «¡ real, log,- being the ¿-fold iteration

of log. Such functions are -<l and >-l according as the first nonzero

mi is negative or positive. A logarithmic domain is a set of functions

which, together with all finite linear combinations thereof (with

logarithmic monomials for coefficients), are either ~ logarithmic

monomials or else are trivial (-< every logarithmic monomial). The

restriction, in Theorem I, to a logarithmic domain 3D has the effect of

guaranteeing that the differences V— W, where F~IF, will be „-com-

parable with Wo/fWo (which is «x_1(log x)_1 • • • (logax)_1 for

some q).

The letters IF, IF,, V, U, etc. are used for functions which are ~

logarithmic monomials of the form

cx_1(logx)_1 • • • (logj,_i x)_1(logp x)_1+T

• (logp+i x)0' • • • (logp+, x)a;       t > 0,
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so that their f™ diverges. (In fact, /í0/'~r_1x (log x) • • • (logp x)/(x)

for any such /. See [3, Part V, Lemma f ].) logarithmic monomials

of this sort form the divergence class. For every M in this class and

every P^l, (M~XD)E~<.1; in particular, DE<x~x(log x)~x • ■ ■

(log,x)_1 for q = 0, 1, 2, • • • . This fact is used in Lemma 9.

An operator L is unimajoral if Z,(>/-<1 whenever y-<l, while

L(y)~\ whenever y~l ; the L's we study are unimajoral. It is known

[2, §27] that whenever the coefficients ß,(x) of a unimajoral

L= ^¡=0ai(x)Di belong to a logarithmic domain and an(x) is non-

trivial, L can be approximately factored: an approximate factoriza-

tion sequence Wi'iW^ • • • ~¿Wn of logarithmic monomials in the

divergence class can be found such that L= Wn • • • Wi-\- XX i EAV i

■ ■ ■ JFi+Po, where each Ei-<1 and by TF<we mean the (unimajoral)

operator (l — WrxD). A similar expression, with different P.-'s (but

always -<1), can be written using any sequence of functions

(Vu V2, ■ ■ ■ , F„) with Vi~Wi in place of (Wu W2, ■ ■ ■ , Wn). We

are interested in sequences (Vi, V2, • • • , V„) for which the cor-

responding Ei are all 0 for i<n; such sequences yield exact factoriza-

tions: L = (l-t-£„)F„Fn_i ■ • • Fi. In [3, Part II], exact factorization

is achieved for the case in which (Wi, W2, • • ■ , Wn) is separated:

exT)(f(Wi—Wj))^Cl or >~1 for all pairs i^j. (For a precise definition,

see [3, Part II].) This condition permits the determination of an

exact factorization sequence (Fi, F2, • • • , F„) from certain quasi-

linear algebraic differential equations treated in [2].

The present study treats unimajoral operators which possess ap-

proximate factorization sequences Wi=W2= • • • = Wn: L = (W)n

+ S"-o Ei(W) . The results of [3, Part II], which at first appear use-

less in case of such extreme lack of separation, are applied to an oper-

ator with a separated factorization sequence obtained from L by

some changes of variable. Theorem I, below, takes care of operators

L = (W)n-\- ^"-o Ei(Wy whose coefficients (which are in any case

-<1) satisfy Ei^.(fW)'~n. We call such operators regular, this desig-

nation being suggested by analogy to the criterion for regular singu-

lar points in the classical treatment of linear differential equations.

Throughout this paper, integral signs should be construed as hav-

ing a fixed lower limit, the upper limit serving as the independent

variable. In situations involving 1/fW, the domain of that variable

will be subject to obvious and harmless restrictions.

2. Heuristics. Introduction of the new variable s= —JW leads to

W = l+d/ds, so the operator L = (W)n+ XXo Ei(W){ becomes

(l+d/ds)n+^.0 Ei(l+d/ds) . It is natural then to set y = e~'z in
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the equation L(y)=0; this leads to ((d/ds)n+ £?_0 Ei(d/ds){)z = 0.

In the trivial case where each £, = 0, the substitutions s = e' and

z(s)=e~'v(t) convert the equation (d/ds)nz = 0 into

<ri*+»t(-l)»nlO.-n-1d/dt)(l-(n-i)-1d/dt) ■ ■ ■ (l-l~1d/dt)v = 0,

in which we have an exactly factored operator with the separated

factorization sequence (1, 2, • • • , n). The solutions v(t) are, of course,

«exp/l, exp/2, • • • , exp/ra. In case the Ef are not all zero, the

same substitution in the equation ((d/ds)n+ Y"=o Ei(d/ds)i)z = 0

leads (by straightforward calculation) to a unimajoral equation for

which (1, 2, • • • , n) is an approximate factorization sequence, pro-

vided the Ei satisfy the condition E,-e(B-i)<-<l (¿ = 0,1, • • • ,«). Since

(1, 2, • • • , n) is separated, we may apply Theorem II of [3] to ob-

tain   an   exact   factorization   V„Vn-i • • • Viv(t)=0   where   Fi~l,

F2~2, • • • , F„~k, and solutions v(t) which are ~exp/Vi, i = l,

2, • • • , n.

3. Definition.  If L = (W)n+ Y,to Ei(WY with  Ei<(fW)*- for
i = 0, 1, • • • , n, we shall say L is regular with respect to W.

4. Theorem I. Let 2D be a logarithmic domain. Let L be a unimajoral

operator expressible in the form (Wo)"+ ¿L"=o Ei(Wo){ with each £¿-<l

and Wo in the divergence class. Then either there exits no W in 2D such

that L is regular with respect to W, or else { W: WE 2D and L is regular

with respect to W\ is precisely one of the equivalence classes in

£>r\{W: W~Wa] defined by the equivalence relation =. where U=V

means U— V~<Wo/fW0. If L is regular with respect to W, then L can be

expressed as a product of first-order factors: L = uVn • • • Vi, where

Vi~W for each i. Conversely, if L is expressible as such as a product,

then L is regular with respect to W. If L is regular with respect to W,

the solutions of L(y) =0 are generated by a basis consisting of functions

yo, yi, • • • , yn-i where y0Kyi-< • • • -<y„_i. For each i, y¿~exp JWi

for a certain Wi~W, and log(yl/y1+i)'~ —log/IF.

Proof. The theorem summarizes the following lemmas.

5. Lemma. Let L be regular with respect to W. Then there exist

functions Wo, W\, • • • , Wn-i satisfying Wi — W~iW/fW for i>0,
Wo — W-<.W/JW, such that the equation L(y) =0 fias solutions y0, yi,

• • • , yn-i satisfying y.-^-exp fWit i = 0, 1, ••-,« — 1.

Proof. Let/=5"e_s, where s(x) = —fxW. We have

W(f) = ns"-1e-; (W)2(f) = n(n-l)sn-2e-; ■ ■ ■ , (W)n(f) = n\e—.



728 E. W. CHAMBERLAIN [August

Using the relation IF(Zz) = (IF(Z))(M(z)) where M= WZ~lWiZ), we

obtain

IF(/2) = ns^e-Qiiz), (IF)2(/z)

= «(« - l)s»-2e-'Q2Qiiz), • ■ -, iW)"ifz) = n\e-'Qn ■ • • Çi(z)

where Qi= — (n — i-\-1)IF//IF for each i. Hence L(Jz) may be written

w!e-P'(z) where P' = Qn ■ ■ ■ Qi+ Tï-o (P.-s""'/(«-*') !)& • • • &
(All this is verified in an elementary way.) Since P is regular with re-

spect to IF, all but the leading coefficient in P' are -<1. P' is thus a

unimajoral operator; furthermore, its factorization sequence

(Qi, • • • , Qn) is separated. It follows from [3, Theorem I] that there

exists a representation of P' in the form vÛn • • • Û\ with n~l and

Ui~Qi for each i. According to [3, Theorem II], the equation P'(z)

= 0 has solutions z¡ with z¿~exp jUj, j = 1, • • • , n. The correspond-

ing solutions of Z(y)=0 are of the form e~'snz¡, which may be ex-

pressed as the product of a function « 1 and exp /(TF+ Uj+nW/fW).

The parenthesized term serves as the Wf called for in this lemma,

taking i=j — 1, yi = Cie~'snzi+i, Ci a normalizing constant.

6. Lemma. In Lemma 5 we have yo-<yi-< • • • -<yn-i-

Proof. It is clear that y»/y¿+i~exp fiWi — Wi+i) and that PF<

— Wi+i~ — W/fW. Using [3, Part V, Lemma f], we-see that the

latter is ~— rx_1(log x)-1 • • • (logpx)-1, for a positive real r and an

integer £ = 0. Our conclusion then follows from [3, Part V, Lemma

y]-

7. Lemma. In Lemma 5 we have Iog(y,-/yi+i)~—log JW.

Proof. The relation y,-/y<+i^/exp/(IF,—IF,+i) immediately im-

plies

yi/yi+i = (1 + P) exp J (TF< - IF,-+1)

where P^<1. Thus

log(y,/y¿+i) = JiWi- Wi+i) + log(l + P).

Since Wi - Wi+i-W/fW, /( W{ ~ Wi+i)-log fW (this is seen with
the help of [3, Part V, Lemma {"]), which is >-l. The term log(l-f-P)

is seen tobe -<1, using [l, §27]. Hence we have log(yi/yi+i)'~—log/IF.

8. Lemma. If L is regular with respect to W, there exist functions

Vi, Vt, • • • , Vn such that Fr~F2~ • • • ~Vn~W, Vt-W<W/JW
for each i, and L = uVn ■ • • Vi with w<~l.
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Proof. As in the proof of Lemma 5, we have L(y) =n\e~'vÛn • • •

Ùi(y/f). Writing Ui= -n(l+h)W/fW with hi<l, we have Ui(y/f)

= (Ùi(l/f) Vi(y) where F1= Ui(Ùi(l/f))f and

i/i(l//) = Üi(s-"e')

= s~ne' + s(n(l + hi}Ds)-l(-ns~n~le'Ds + s~ne'Ds)

= /-'(l + hi)-\ki + s/n).

Thus  Vi = (-nDs/s)(l+hi)f-1(l+h)-1(hi+s/n)f= -Ds(hin/s+l)
= W(l-hm/fW). From this we see that Vi-W<W/JW.

Now Üi(l/f)=ws'ln-l)e' where w~l/w. Operating on (Üi(l/f))Vi

with î/2, we get (Ù2(w))Ûi(sr^-^e'Vi) where t/2' ~ £/2 ~

-(n-l)Z>5/i. Writing t// = -(n-l)(2?s/j)(l+*,) with h2<l, and

proceeding exactly as above, we obtain ÙiÙi(y/f)=w's~'-n~i)e?VîV\(y)

where w'~(n(n—1))_1 and F2= W(l— h2(n — l)//W). Continuing in

this way, we eventually transform Un • • • Ü~i(y/f) into w"e'Vn ■ • •

Vi(y), where w"~l/n\ and Vi—W-<W/fW lor each i. This gives us

L = uV„ ■ ■ • Fi, concluding the proof.

9. Lemma. If V~W and V-W<W/fW (equivalently: V-W
~<V/fV), then L is regular with respect to W iff L is regular with re-

spect to V.

Proof. Assume V-W<W/JW. Then

W = (V/W)V + (1 - V/W) = (1 + g)V - g

where g = (V—W)/W-<l/fV. Thus IF is regular with respect to V.
One proves by induction that the operators (W)p (p = 2, 3, ■ ■ • ) are

regular with respect to V: If true for p = k — l, we have (IF)*-1

= (V)k-1+Tt-o1Fi(V)< with   fWC/V)*-»-» and

O*0*=((i+f) v-g) ((f^+eW)*)-

That the latter is regular with respect to V follows from the fact that

V(Fi(VY(y)) = Fi(V)i+1(y) - (DFi/V)(Vy(y) where F,^(/F) •'+!-* by
the induction hypothesis, and DFi/V^(jV)i~k. The latter inequality

is seen by writing F, = A(/F)*'+1_* with A^l and noting thatZ>&/F

-<(/F)_1 (because Dh<x~l(log x)~l ■ • • (logjx)-1 if Ä^l). The regu-

larity of L with respect to V follows readily from the regularity of the

(W)p with respect to V and the assumption that L is regular with

respect to IF. The converse follows from the symmetry of V and W

in this discussion.
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10. Lemma. If L = uVn • • • Vi where u~l, Fi~F2~ • • • ~-F„

~W and Vi— W-<W/fWfor each i, then L is regular with respect to W.

Proof. With the operators F< expressed in the form (1+gAW—gf

where g,-= 1 — W/V^l/fW, the proof of this lemma closely parallels

the proof of Lemma 9.

11. Lemma. If L is regular with respect to W, and V~W but V— W

£ W/fW, then L is not regular with respect to V.

Proof. Suppose L is regular with respect to V. As a consequence

of Lemmas 5 and 6, there exist solutions yo^yi-< • • • -<yn-i with

y¿~exp fWi and Wi~W~iW/fW for *>0, while Wo~W<WIfW.
At the same time we have solutions ;yo-<yi-< • • ■ -<yn-i with

yi~expfVi,Vi- V~iV/fViori>0, while F0- V<V/fV. Since they,-
and the y,- constitute two bases for the space of solutions of L(y) =0,

it follows readily that y0 ~ yo, whence yol y o » 1 and log(y0/yo) « 1. But

y„/yo~exp f(Wo- Va), and W0- V0 = (Wo-W) + (W-V) + (V- V0)
tW/fW. From this it follows that log(y0/y0)~/(iFo- V0)^l, a

contradiction. Therefore L is not regular with respect to V.

12. Remark. There exist unimajoral operators L of the form

(W)n+ ]C"-o Ei(W){ such that L is not regular with respect to V for

any V.
For example, (l — (l + l/x)~xD)(i—D) can be expressed in the

form (Wy+ExW+Eo, with £<,, Ei-<1, for IF=1 (indeed, for any

JF~1). That this L is not regular with respect to V for any F~l may

be seen as follows: Suppose L is regular with respect to F~l. Then

by Lemma 5 there exist W0 and Wi with TF0- V<V/fVand Wi-V

r^V/fV such that the solutions of L(y)=0 are generated by

y0~exp/JFo and yi~expJWi. In this case Wi— Wo^V/fV and

V/fV~l/x, so yi/y0'~e/ where /~log x, and log(yi/y0)'^log x. But

one sees directly that the solutions of L(y)=0 are generated by ex

and x2ex, so yi/yo must be «x2, whence log(yi/y0)'~2 log x, a contra-

diction.
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