DIFFERENTIAL OPERATORS APPROXIMATELY OF THE
FORM (1—(1/W(x))d/dx)"
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1. Introduction. This paper studies the factorization of certain
homogeneous linear differential operators L= D, a,(x)D‘into prod-
ucts bo(x) (1 —bi(x)D) - - - (1 —b.(x)D) of first-order factors, the func-
tions ¢; and b; discussed in terms of asymptotic behavior as x tends
to infinity in the complex plane. Among other results, we obtain in-
formation about the asymptotic behavior of the solutions of L(y) =0.
Speaking loosely, the operators L are assumed to be expressible in the
form L=(1—-W-D)*»+E,(1 —- W-'D)*+E, ,(1-W-1D)»14 . ..
+Ei(1—W-'D)+E, where each E;—0 as x—, while [;W—» as
x— 0. In the factorization L=0b,(1—b:D) - - - (1—5b,D) we obtain,
it will be the case that by—1 and b,/(W—1)—1 (:>0) as x— .

We use Strodt’s asymptotic relations <, ~, =, referring to a sort
of sectorial neighborhood system of infinity in the complex plane.
This system is denoted F(a, 8). (For an index of notation and termi-
nology, see [2, Part IX, pp. 105-107].) Roughly, f<1 means f—0;
f~<g means f/g—0; f~g means f/g—1, or (f/g)—1<1; and f~g
means f/g—c, where ¢ is a nonzero complex constant. Logarithmic
monomials are functions of the form cxm™(log x)™(log, x)™ - -
(logg %)™, with ¢ complex and m; real, log; being the i-fold iteration
of log. Such functions are <1 and >1 according as the first nonzero
m; is negative or positive. A logarithmic domain is a set of functions
which, together with all finite linear combinations thereof (with
logarithmic monomials for coefficients), are either ~ logarithmic
monomials or else are trivial (< every logarithmic monomial). The
restriction, in Theorem I, to a logarithmic domain D has the effect of
guaranteeing that the differences V— W, where V~W, will be % -com-
parable with W,/fW, (which is =~x~!(log x)=!- - - (logx)~! for
some ¢).

The letters W, W,, V, U, etc. are used for functions which are ~
logarithmic monomials of the form

¢z~ (log %)~ - - - (logy—1%)~"(log, x)~1*"
(logpsr )% « - - (logpys )%, T>0,
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so that their [; diverges. (In fact, [;f~7"% (log x) - - - (log, %)f(x)
for any such f. See [3, Part V, Lemma {].) logarithmic monomials
of this sort form the divergence class. For every M in this class and
every E<1, (M'D)E<1; in particular, DE<x"'(log x)~!- . -
(loggx)~tfor ¢=0,1,2, - - - . This fact is used in Lemma 9.

An operator L is unimajoral if L(j,<1 whenever y<1, while
L(y)~1 whenever y~1; the L's we study are unimajoral. It is known
[2, §27] that whenever the coefficients a;(x) of a unimajoral
L= )" ,ax)D’ belong to a logarithmic domain and a,(x) is non-
trivial, L can be approximately factored: an approximate factoriza-
tion sequence WiS W,S « - - W, of logarithmic monomials in the
divergence class can be found such that L=W, - - - Wi+ D", E;W;

- + - Wi+ E,, where each E;~<1 and by W;we mean the (unimajoral)
operator (1—W;lD). A similar expression, with different E;'s (but
always —<1), can be written using any sequence of functions
(Vl, Vg, ey, Vn) with V;NW,' in place of (Wl, Wz, try, Wn) We
are interested in sequences (Vi, Vi, - -+, V,) for which the cor-
responding E; are all 0 for 1 <#; such sequences yield exact factoriza-
tions: L=(14+E,)VaVa1 - - - V1. In [3, Part I1], exact factorization
is achieved for the case in which (W;, Wy, - - -, W,,) is separated:
exp(f(W;—W;))<1 or >1 for all pairs i5]. (For a precise definition,
see [3, Part II].) This condition permits the determination of an
exact factorization sequence (Vy, Vs, + - -, V,) from certain quasi-
linear algebraic differential equations treated in [2].

The present study treats unimajoral operators which possess ap-
proximate factorization sequences Wi=W,= - .. =W,: L=(W)»
+ D1 o E«(W)'. The results of [3, Part I1], which at first appear use-
less in case of such extreme lack of separation, are applied to an oper-
ator with a separated factorization sequence obtained from L by
some changes of variable. Theorem I, below, takes care of operators
L=(W)*+ X "o E{(W)i whose coefficients (which are in any case
<1) satisfy E;<(/W)*". We call such operators regular, this desig-
nation being suggested by analogy to the criterion for regular singu-
lar points in the classical treatment of linear differential equations.

Throughout this paper, integral signs should be construed as hav-
ing a fixed lower limit, the upper limit serving as the independent
variable. In situations involving 1/fW, the domain of that variable
will be subject to obvious and harmless restrictions.

_2. Heuristics. Introduction of the new variable s= — JW leads to
W=1+4d/ds, so the operator L=(W)*+ > *,E(W)' becomes
(14d/ds)»+ 3.2 o E;(14d/ds). It is natural then to set y=e—*z in
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the equation L(y) =0; this leads to ((d/ds)"+ Do Ei(d/ds)?)z=0.
In the trivial case where each E;=0, the substitutions s=et and
2(s) =e~*w(t) convert the equation (d/ds)"z=0 into

e 0 — 1) l(1—n1d/dt) (1 — (n—1)"1d/dt) - - - (1—1-1d/df)v=0,

in which we have an exactly factored operator with the separated
factorization sequence (1,2, - - -, n). The solutions v(¢) are, of course,
~exp [1, exp [2, - - -, exp [n. In case the E; are not all zero, the
same substitution in the equation ((d/ds)"+ D o E:(d/ds)?)z=0
leads (by straightforward calculation) to a unimajoral equation for
which (1, 2, - - -, ) is an approximate factorization sequence, pro-
vided the E; satisfy the condition E,"—9¢<1 (:=0,1, - - -, n). Since
(1,2, -+ -, n) is separated, we may apply Theorem II of [3] to ob-
tain an exact factorization V,V, - - Vw(t)=0 where Vi~1,
Ve~2, -+ -, Va~n, and solutions v(f) which are ~exp [V;, i=1,
2, s, M.

3. Definition. If L=(W)"+ > ., E{W)* with E;<(fW)"" for
1=0,1, - - -, n, we shall say L is regular with respect to W.

4. Theorem 1. Let D be a logarithmic domain. Let L be a unimajoral
operator expressible in the form (Wo)*+ Y~ o E(Wo)¢ with each E;~<1
and W in the divergence class. Then either there exits no W in D such
that L 1s regular with respect to W, or else { W: We&Dand L is regular
with respect to W} is precisely ome of the equivalence classes in
DN{W: W~W,} defined by the equivalence relation = where UV
means U— V<W/[W. If L is regular with respect to W, then L can be
expressed as a product of first-order factors: L=uV, - - - Vi, where
V=W for each i. Conversely, if L is expressible as such as a product,
then L is regular with respect to W. If L is regular with respect to W,
the solutions of L(y) =0 are generated by a basis consisting of functions
Yo, Y1, * ¢y Yno1 Where yo<m~< + + - <y._1. For each i, y;,~exp [W;
for a certain W,~W, and log(y:/yii1)~—log [W.

Proor. The theorem summarizes the following lemmas.

5. Lemma. Let L be regular with respect to W. Then there exist
functions Wo, Wi, + + +, Wa satisfying Wi—W~~iW/[W for i>0,
Wo—W=<W/[W, such that the equation L(y) =0 has solutions yo, y1,

*y Yn1 Satisfying yi~exp [W, 1=0,1, -+, n—1.

PRrOOF. Let f=s"e~*, where s(x) = — [=W. We have
W(f)=ns1e=s, (W)2(f)=n(n—1)s7"2>, - - -, (W)*(f)=nle".
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Using the relation W (Zz) = (W (Z))(M(z)) where M =WZ-W(Z), we
obtain

W(fz) = ns"~le~*Qu(2), (W)*(f2)
= n(n — 1)s"7%°Q:01(2), - - -, (W)(f2) = nle™*Qn - - - Q1(2)

where Q;= —(n—1+1) W/[W for each 7. Hence L(fz) may be written
nle—L’'(z) where L'=Q, « - - Q1+ 2 o (Ess®/(n—5))Q0; + + - (1.
(All this is verified in an elementary way.) Since L is regular with re-
spect to W, all but the leading coefficient in L’ are <1. L’ is thus a
unimajoral operator; furthermore, its factorization sequence
(04, -+ -, Q.) is separated. It follows from [3, Theorem I] that there
exists a representation of L’ in the form vU, - - - U; with v~1 and
U:~Q; for each i. According to [3, Theorem II], the equation L'(z)
=0 has solutions z; with z;~exp [U,, j=1, - - -, n. The correspond-
ing solutions of L(y)=0 are of the form e—s"z;, which may be ex-
pressed as the product of a function ~1and exp [(W+ U;+nW/[W).
The parenthesized term serves as the W; called for in this lemma,
taking t=j—1, y,=c;e~*s"2;11, ¢; a normalizing constant.

6. Lemma. In Lemma S we have yo<y—< * + + <Y1

ProorF. It is clear that v.;/y,.i~exp [(W;—W,u) and that W;
—Wia~—W/[W. Using [3, Part V, Lemma {], we-see that the
latter is ~—7x~(log x)~! - - + (log,x)~!, for a positive real 7 and an
integer p=0. Our conclusion then follows from [3, Part V, Lemma
]

7. Lemma. In Lemma S we have log(y:/yi11)~—log [W.

Proor. The relation y,/y;.1~exp [(W;—W;;1) immediately im-
plies

sy = (1 + B) exp [ (Wi = Wi
where E<1. Thus

tog(/yes) = [ OWs = Wer) + log(1 + B).

Since W;— W,u~—W/[W, [(W;— W 1)~ —log [W (thisis seen with
the help of [3, Part V, Lemma {]), which is >=1. The term log(1+E)
isseen to be <1, using [1, §27]. Hence we havelog(y./y:11) ~ —log [W.

8. Lemma. If L is regular with respect to W, there exist functions
Vly Vz, sy, V,, sucl? that V1:VV2~ o e NVnNW, V.—W‘<W/IW
for each i, and L=uV, - - - Vy with u~1.
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PROOF. As in the proof of Lemma 5, we have L(y) =nle~vU, - - -
Ur(y/f). Writing Uy= —n(1+h) W/[W with k<1, we have U:(y/f)

= (U:(1/f) Vi(y) where Vi= Ui(U:(1/f))f and
Ur(1/f) = Us(s™"e?)

= s7"¢* + s(n(1 + k1) Ds)~'(—ns—"1¢* Ds + s—e* Ds)

= 11 + k)7 (b + s/7).

Thus Vi=(—nDs/s)(1+h)f(1+h)"(h+s/n)f= —Ds(n/s+1)
=W({1 —kin/[W). From this we see that Vi—W<W/[W.

Now Ui(1/f) =ws=(=De* where w~1/n. Operating on (Uy(1/f)) V;
with U, we get (Uy(w))Uf(s—™Ve'V,) where Uf ~ Uy~
—(n—1)Ds/s. Writing UJ = —(n—1)(Ds/s)(1+h,) with k<1, and
proceeding exactly as above, we obtain U,Ui(y/f) =w's~t—2eV,Vi(y)
where w'~(n(n—1))~! and Vo= W(1 —ho(n—1)//W). Continuing in
this way, we eventually transform U, - - - Ui(y/f) into w”e'V, - -
V1(y), where w”’~1/n! and V;— W—W/[W for each 4. This gives us
L=uV, - - - V1, concluding the proof.

9. Lemma. If V~W and V—W<W/[W (equivalently: V—~W
<V/[V), then L is regular with respect to W iff L is regular with re-
spect to V.

ProoF. Assume V—W—W/[W. Then
W=U/WW+Q-V/W)=_1+gV —g

where g=(V—W)/W=1/[V. Thus W is regular with respect to V.
One proves by induction that the operators (W)? (p=2, 3, - - - ) are
regular with respect to V: If true for p=k—1, we have (W)*!
=(V)k14 >t Fo(V)¢ with F;<(fV)#=¢-D and

(W)= ((1+g) V—) (<V>~—1+ EF(V)>

That the latter is regular with respect to V follows from the fact that
V(F(V)i(9)) = Fi(V)*+1(y) = (DF:/ V)(V)i(y) where F;< (V)= by
the induction hypothesis, and DF;/ V< ([V)*. The latter inequality
is seen by writing F;=h(fV)#*1~* with k<1 and noting that Dk/V
< (f V)1 (because Dh<x~'(log x)~! - - - (logex)~'if h<1). The regu-
larity of L with respect to V follows readily from the regularity of the
(W)? with respect to V and the assumption that L is regular with
respect to W. The converse follows from the symmetry of V and W
in this discussion.
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10. Lemma. If L=uV, .- Vi where u~1, Vi~Ve~ .- ~V,
~W and V,— W<W/[W for each i, then L is regular with respect to W.

Proor. With the operators V; expressed in the form (1+4g;) W——g,-
where g;=1—W/V,<1/[W, the proof of this lemma closely parallels
the proof of Lemma 9.

11. Lemma. If L is regular with respect to W,and V~W but V—W
zZw/ W, then L is not regular with respect to V.

ProOF. Suppose L is regular with respect to V. As a consequence
of Lemmas 5 and 6, there exist solutions yo<y~< - + + <y, with
yi~exp [W; and W;—W~iW/[W for i>0, while Wo— W<W/[W.
At the same time we have solutions #,<$< ::+ <¥,1 with
ji~exp[V, Vi— V~iV/[Viori>0, whileVo— V<V/[V.Since the y;
and the §; constitute two bases for the space of solutions of L(y) =0,
it follows readily that y, = o, whence vo/, ~ 1 and log(yo/0) 3 1. But
yo/Fo~exp [(Wo— V), and Wo— Vo= (Wo— W) +(W—V)+(V— Vo)
Z W/JW. From this it follows that log(yo/30)~f(Ws—Vo)>1, a
contradiction. Therefore L is not regular with respect to V.

12. Remark. There exist unimajoral operators L of the form
(W)n+ D20 Ei(W)* such that L is not regular with respect to V for
any V.

For example, (1—(14+1/x)"'D)(1—D) can be expressed in the
form (W)?4E,W+E,, with E,, E;<1, for W=1 (indeed, for any
W~1). That this L is not regular with respect to V for any V~1 may
be seen as follows: Suppose L is regular with respect to V~1. Then
by Lemma 5 there exist W, and W, with Wo— V<V/[V and W,—V
~7V/[V such that the solutions of L(y)=0 are generated by
yo~exp [W, and yi~exp /Wi In this case Wi—Wo~V/[V and
V/[V~1/x, so y1/yo~¢' where f~log %, and log(y:1/y0) ~log x. But
one sees directly that the solutions of L(y) =0 are generated by e*
and x%?, so y1/y, must be ~x2, whence log(y1/y0)~2 log x, a contra-
diction.
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