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THE DUAL OF THE FLABBY IS THE BAR
JAMES A. SCHAFER

Introduction. The object of this paper is to show the connection be-
tween the bar resolution for algebras and the canonical flabby resolu-
tion for sheaves. We will show that both resolutions are natural con-
structions arising from an adjoint relation between two functors. The
main result will be that there is a natural chain isomorphism between
the “categorical” bar resolution and the dual of the “categorical”
flabby resolution.

Throughout this paper %, B will denote additive categories and
F: 3>, G: A—B functors between them with F adjoint to G. That
is, for each 4 in U, B in B, there exists a natural isomorphism of
abelian groups,

Homy(FB, A) = Homg(B, GA).
It follows that there exist natural transformations,
e: Iy — GF, €:FG — Iy,

with certain properties. An immediate consequence of these properties
is that, for all 4 in . we have

(1) G(?A)GGA = idaA.

For this and other results concerning adjoint functors, see [3], [4].

Suppose S and T are functors from the category U to the category
¥ and that r is a natural transformation from S to T If U is a func-
tor from a category € to a category N and V is a functor from a cate-
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gory B to a category 9, then we denote by V #r % U the natural
transformation from the functor VSU to the functor VT U, where
V *r % U(C) = V(ryc). For further details, see [2, Appendix].

The categorical bar construction. Suppose now that B possesses
cokernels, i.e., every map in B has a cokernel, then we may define the
“normalized” categorical bar construction as follows.

Let F: 83—%B be the covariant functor defined for each B in 8 by
the sequence (2), where FB is the cokernel of ep,

e —
2) 52 ere3FB 0.
Obviously F is a functor and p: GF—F is a natural transformation.
Define the functors B,: 41—, n=0, by

3) B, = FFG,
and the natural transformations s_1: G—GBy, $,: GB,—GB, 41, by

s_1=¢e*G,

4) — -
sa = (e* FPH1G)(p * FrG), n = 0.

It has been shown [5, p. 271] that there exist unique natural trans-
formations e: Bo— Iy, d,: B,—B,_1, n=1, such that, for each 4 in ¥,

(a) G(es)s1=idga,

(b) 5-1G(e4) +G(01)so=1d ¢B,a,

(C) sn—lG(an) +G(an+l) Sa= id GBh4» n g 1.

To show that this is the bar construction in the usual case, all that
one needs to do is to let B be the category of modules over a com-
mutative ring K; let A be the category of U-modules, where U is an
algebra over K; let G be the forgetful functor; and let F be U®x.

The categorical flabby resolution. Assume that ¥ possesses kernels.
An easy exercise concerning adjoints shows that G preserves kernels,
i.e.,if fisa map in ¥, then G(ker f) is naturally equivalent to ker G(f).

Define a functor F: %— by the sequence (5), where FA is the
kernel of &4,

) 0o Falirca® 4.

Obviously F is a functor and $: F—FG is a natural transformation.
Define the functors B,: A—%A, n=0, by

(6) B, = FGF~,

and the natural transformations &: Bo—Ig, 8.: Ba— Ba_y, by
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e=¢

@) 0= (pxFr1)@*Fr), nzl.

It is clear that d,6=0 and that 9,-,0,=0 so that for each 4 in
9, (B(4), ) is an augmented complex over A.

To show that this agrees with the dual of the canonical flabby
resolution for sheaves, we dualize the above construction and let 8
be the sheaves over X4, where X is the set of the topological space X
with the discrete topology; let U be sheaves over X and G=1*,
F=14, where ¢ is the inclusion map of X, into X. Then since
Homyx, (1*F, G) = Homx(F, 1xG), where § is a sheaf on X, G is a sheaf
on X4, the construction above yields the usual flabby resolution for
sheaves. For details, see [2].

MAIN THEOREM. Suppose that both the above constructions can be
defined (for example, if both categories are abelian), then there exists a
natural chain isomorphism f: (B, 3)—(B, 9).

LEMMA. The functors FG and GF: A—¥Y are naturally equivalent.

ProoF. For each 4 in ¥, we will construct an equivalence w4: FGA
—GFA. The construction will be manifestly natural.

Consider the sequence (2) applied to G4 in 8. By (1) there exists
a map G(&4) such that G(é4)egs =id g4. Since FGA is the cokernel of
eca4, there exists a map u4s: FGA—GFGA such that we obtain the
direct sum diagram,

€ —
®) 642 Groa 2% Fea.
G(€a) ba

Applying G to the sequence (5) and using remark (1) again shows
that there exists a map As: GFGA—GFA such that we obtain the
direct sum diagram,

G( GG
©) 674 229 grea E9 64,
A €g4A

(Recall that G preserves kernels.) Obviously w4, N4 define natural
transformations u: FG—GFG and \: GFG—GF. Let w=Au: FG—GF.
Then w is a natural equivalence with inverse (p * G)(G * §). This
last statement follows from the fact that p-e=&-$=0 and that (8)
and (9) are direct sum diagrams.

ProorF oF THEOREM. The natural transformations f,: B,—B,,
n=0, are defined by iterated use of the natural transformation w as
follows:
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fo = ld,

(10) f” = (F*w* Fn~l)(pﬁ*w*ﬁn—2) e (FF"—2*w*F)(FF““*w),

Since B,=FF"G and B,=FGF», this amounts to replacing the
factor FG and GF one step at a time by means of the lemma. Clearly
fn is a natural isomorphism with inverse f;' given by replacing w by
w-lin (10) and taking the composite in the opposite order. By means
of this isomorphism we may define a boundary d,: B,—B,_1 and an
augmentation e: Bo—Iy. We will show that this boundary satisfies
(a), (b) and (c) for the contracting homotopy s and hence is the “cor-
rect” boundary for the bar construction. The definition of 9, will
automatically make f a chain map. Let

€ = E,

11 -1 -
( ) an =fn-l-1'an'fn, n _2_ 1.

The verification of (a), (b) and (c) will follow immediately by induc-
tion and a few remarks.
(1) Forall 4 in ¥,
@) fal4) =fara(FA) FFr(ws), n21,
(b) f7'(4) = FFY(wi")f;21(FA), nzl.
The proof is an immediate consequence of the definition of f, and
the fact that Fr=F»1.F,
(i1) Forall 4 in ¥,
(a) 91(4) = pae(FA),
(b) 0.(4) =0,4(F4), nz2.
This follows immediately from the definitions.
(iii) For all 4 in ¥,
(@) so(4) =GF(wz")sa(FA)wapau,
(b) 5.(4) =GFF*(w}")sa1(FA)GFFr1(w,), n21.
We give here a proof for (b) since a similar, shorter proof will work
for (a). Consider the following diagram.

GFF"_I(‘ZUA)

GFFGA GFF~GF 4

~

pF"GA lp'F"—IGF‘A

T (Fn—1
Frt1G A M FrGF A

eF1GA eF"GF A
_ v GFF"(wA) _
GFF"\GA ———————— GFFGF A.
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The top diagram commutes since p is a natural transformation
from GF to F, and F*!(w,) is a map from F*}(FGA) to Fr—1(GFA).
The lower diagram commutes since e is a natural transformation from
Iy to GF, and Fr(w,) is a map from F*+'GA to F*GFA. The left-
hand side is by definition s,(4) and the right-hand side is s,_1(FA4),
whence the conclusion since the bottom map is an isomorphism.

We are now in a position to verify (a), (b) and (c). These are
straightforward calculations involving no difficulties. We give for
clarification a sample, the inductive step of (c). For simplicity of
notation, we write GFF*(w,4) as "w4, and for a natural transformation
r, let 7(4) =r, r(FA) =r*. Then, for example, remark (iii, (b)) takes
the form,

n —1 * n—1
Sn = WA *Sp-1° wW4.

Now suppose (c) true for all j<# and all 4 in ¥, then

501G @) + G@nsr)ss = "z suz " wa-G(faor)G(BR)G(fr)
+ GUn )G@u)GUnsr) - 0a sat” wa = ") spa”

n—1

P GG )G " wa 4+ T waG (o) GBENG ()

-1 % n-1 -1 -1, * * * ok -1 .
'nwA°”wA ’sn—l'” wy = " wa (sn—‘zG(an—l) + G(an)sn—l) * Wy = id

by induction applied to FA4.
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