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1. Introduction. The behavior as i—» oo of the solutions of the equa-

tion,

(1.1) x(t) +  f b(t - r)g(x(r)) dr = /(/)        (0 g < < oo),

has been studied under various assumptions on the given functions

b(t),f(t), g(x). A large literature exists for the particular case of (1.1),

called the renewal equation, where ö(0 = 0=/(0 and g(x)=x; see [l]

for references. Motivated by certain problems in heat transfer and

superfluidity, the special case of (1.1) where b(t) =t~ll2,f(t) is periodic,

and g(x) is monotone increasing with g(0) =0 has been investigated

in [3], [4], [6], [8]. (Except in [3},f(t) = l. In [8], b(t)EU0, «)
is taken more generally than b(t)=t~112.) The equation

x'(t) =  - j  a(t- r)g(x(r)) dr f' = -,0a/<»)

may be converted by integration into the case of (1.1) in which

b(t) — fôa(r) dr and /(¿)=x(0). It arises in reactor dynamics under

hypotheses implying

a(t) E C[0, oo), (-l)*o»>(0 ^ 0       (0 < I < oo ;k = 0, 1, 2, 3),

g(x) E C(- co, oo ), xg(x) > 0        (x ^ 0),

and has been studied, e.g., in [2].

If g(x) = x,/(r)-»/(«> ) 5¿ ± oo, and b(t) GFi(0, oo ) satisfies

/» oo

(1.2) I     exp[-st]b(t)dt ^ - 1        (Res ^ 0),
J o

then it is known [7, p. 58] that any solution x(t) of (1.1) satisfies

(1.3) Iim x(t) = —^-^-

1 +  I    b(t) dt
Jo
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In this paper a nonlinear version of (1.3) is obtained. The dropping

of the linearity assumption g(x) =x causes us to require more of bit)

than (1.2) and more of/(/) than/(i)-*/(co).

Theorems 1 and 2 are concerned, respectively, with the bounded-

ness and asymptotic behavior of the solutions of (1.1).

Theorem 1. Let bit), fit), and g(x) satisfy

(1.4) bit) E C'[0, oo), (-l)*J(*)(i) ^ 0       (0 ^ / < oo ; k = 0, 1),

(1.5) f(t)EC'[0, co),   f°\f'it)\dl< co,

(1.6) g(x) G C(— », co ), g(0) = 0, g monotone nondecreasing.

If x(t) is a solution of (1.1) o« 0 gi < co, then

(1.7) sup    | x(t) |  < co.
0S«<°o

■if /(0 a^° satisfies

(1.8) sup    |/'(0|  < co,
0â<<»

iÄe«

(1.9) sup    |x'(0|  < oo.
OS««

It may be noted that the hypothesis and the a priori bound ob-

tained in the proof of Theorem 1 guarantee the existence, but not the

uniqueness, of a solution of (1.1) on 0^/< co ; see [S].

Theorem 2. Let bit), fit), and g(x) satisfy the hypothesis of Theorem

1 as well as &(/)GPi(0, oo) and

(1.10) bit) is not constant on any interval except, possibly, b(t)=0

on T ^ t < co for some T,

(1.11) lim/'(0 = 0,
H«

(1.12) g(x) is monotone strictly increasing.

If x(/) is a solution of (1.1) on 0^t< co, then lim¡<00 x(i) =x(co) exists

and satisfies

(1.13)       x(co)+g(*(co)) r bu) dt=fi«>).
•Jo

Furthermore,
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(1.14) lim x'it) = 0.

2. Proof of Theorem l.s Clearly x'(0GC[O, 00) and

(2.1) x'it) = - J(0)g(x(0) -   f b'(t - r)g(x(r)) dr +/'(/) (0 = t < co).
J 0

Define the open, possibly empty, set â by

¿ = {¿ I x(0 > 0, x'(/) > 0, x(r) < x(0 for 0 ^ t < /}.

It is easily seen that

(2.2) sup   x(/) á maxi 0, /(O), sup xQ) ),
OSK» \ te¿ /

with equality obtaining if sup0s«« x(/)^0. For tEâ, one has, from

(1.4), (1.6), (2.1),

x'(t) = - i(0)g(*(0) - «(«(0)  f *'(* - r) dr +/'(/)
»'o

(2 '3) = - bit)gixit)) +f'it) = /'(/) = I /'(/) I .

Let â = Ut_i at, where ¿4 are disjoint open intervals and where there

may be no terms or only a finite number of terms in the union. If

[to, h] E$k for some k, then from (2.3) one has

(2.4) x(/0 á*(/o)+  f    \f'(t)\dt.
J H

It now follows from (1.5) and (2.4) that

/» 00

sup x(0 g max(0,/(0)) +  I     |/'(¿) | dt < co,

which, together with (2.2), implies

(2.5) sup   x(t) < co.
OSK«

Define the open, possibly empty, set 3D by

3D = {¿I x(0 < 0, x'it) < 0, x(t) > x(0 for 0 ^ t < /}.

Similar to the preceding paragraph, one successively shows that

1 See Added in proof.
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inf x(l) ^ min((0,/(0),  inf x(t) \
ogi<» \ ¡gD      /

x'(Oè — | /'CO 1    (ÍGD),
/» CO

inf x(t) ^ min(0, /(0)) -  I     \f'(t) \ dt > - oo,

inf    x(t) > — co,
Ogl<«

which, together with (2.5), establishes (1.7).

Observing that (1.4) implies &'(/)GFi(0, cc), one obtains (1.9) as

an immediate consequence of (1.6), (1.7), (1.8), and (2.1).

3. Proof of Theorem 2. Define

(3.1) x = lim sup x(l),       x = lim inf x(t).
(—♦00 t—* 00

From Theorem 1 it follows that — oo<x^x<co, and that

(3.2) |*'(t)|  g/3 < oo        (0 | / < »)

for some constant ß.

(i) We first prove that

(3.3) x + g(x) f  b(t)dtûf(*).

If x = x, then obviously x(oo) exists (x(co)=x = x) and (3.3), wiu»

the equality sign, is an immediate consequence of (1.1), (1.5), (1.6),

and b(t)ELi(0, co). Thus, it remains to establish (3.3) for the case

x<X. Let x<x<x. From the definitions (3.1) it is seen that there

exist sequences {/„}, {t*}, and {en}, which depend on x such that

ín —► », in — t„-l -* °° , X(tn) -> X, €„ —> 0 (il -> co ),

x'(tn) = 0, x(ln) > x, x(0 < x, en+i > 0        (n = 1, 2, • • • ),

(3.4)
0 < if < h, ln-i <fn<tn       (» - 2,3, • • • ),

x(0 g x + e„        (¿„_i g / < oo ; n = 2, 3, • • • ).

Define

1
7» = —- (*(<») - *),

(3.5) .   . ,
X„ = min{X| X > 0, *(/„ - X) = x)        (n = 1, 2, • • • ).

x
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From (1.6), (3.2), (3.4) it follows that X„ exists, X„>y„>0, /„— An

>/*, and
1

(3.6)        lim Yn = — (x — x) = y > 0,
n-»» ß

g(x(r)) g g(x 4- ß(r - tn + \n))

á g(x(Q) (tn - X„  g T ^ tn ~ X„ + yn).

From (2.1) and (3.4) one has

b(0)g(:
/ C in-1 /• in—Xn f> fn-^n+Tn /» 'n \

*(U)=(-/.      "J,,   "/,.       ~l.,J
■b'(tn-T)g(x(r))dr+f'(ln)

= i + s + c+ü+/'(g.

Theorem 1 and (3.4) imply

(3 9) l«(*(0)|   ^ K< °°        (0áí< »o),

| g(* + e.) |  á * < «        (« = 2, 3, • • • ),

for some constant i£. From (1.4) and (3.9) one notes that

f  "     b'(tn -  r) dr  g  tfèOn  - <„_!).
»J n

' 'n-1

Similarly, from (1.6) and (3.4), B satisfies

B g - g(x + in)   f        b'(tn - r) dr Ú g(x + en)b(\n) + Kb(tn - /n-l).
J «n-1

Using the first inequality of (3.7), one finds

C Ú -   f Y"ô'(^ - r)[g(x + ß(r -tn + A,)) - g(x(tn))] dr

+ g(x(tn))[b(\n - yn) -b(\n)].

As in the inequality for B, D satisfies

D Ú - g(x + e„)   f b'(tn -r)dr = g(x + en)[b(0) - ¿(An - Tn)]-

Equation (3.8) and the preceding inequalities for A, B, C, D imply

,,,n,0á-   f ynb'(tn - r) [g(x(/„)) - g(x + ß(r -tn + A„))] dr
(3.10) ^(„_x„

^ 2b(0)[g(x + en) - g(x(tn))\ + 2Kb(tn - tn-i) + f(tn),
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where the second inequality of (3.7), ô(Xn)^6(0), and g(x + e„)

èg(x(i„)) have also been employed. As the right-hand side of (3.10)

tends to zero as «-»-co, by (1.4), &(¿)GPi(0, co), (1.11), and (3.4),

it follows that

(3.11) lim   f      [-b'(s)][g(xitn))-gix + ßi\n-s))]ds = 0.

For simplicity, let us assume momentarily the more stringent form

of (1.10):

(1.10') b(t) is not constant on any interval.

We now show that Xn—» co («—>• co ). Suppose the converse holds. Then

there exists a convergent subsequence X„t—>X<oo (&—>co) of {X„},

where 0<7^X, by X„>y„ and (3.6). From (1.4), (1.6), (1.10'),
(1.12), and (3.6) it follows that there exists an interval I, inde-

pendent of k, such that: / is of positive length, I is interior to all the

intervals [Xnk—ynk, X„J for & sufficiently large, and on /both [ — b'is)]

and [g(x(/nit)) — g(x+j8(Xnt — s))] are bounded away from zero. Re-

placing Xn by X„t in (3.11), one sees that the preceding sentence,

together with the nonnegativeness of the integrand of (3.11), yields

a contradiction to (3.11). Thus Xn—■»<».

By (1.1), (1.4), (1.6), (3.4), and (3.5), one has

(3.12) x +   f       nbitn - r)g(x(r)) dr + g(x)   f "   b(f, - r) dr á/(/»)
J » J tn-\n

or, equivalently,

(3.13) x +  f "i(í)g(*(í. - s)) ds + g(x)  f *i(j) ds =■ /(/„).

Letting w—>co in (3.13) ,and noting (1.5), £?(/)GPi(0, oo), (3.9), and

X„—>■ oo, one obtains

(3.14) x + g(x) f   i(j)di^/(oo).
J o

As (3.14) has been established for any x satisfying x<x<x, it follows

immediately that (3.3) holds under the hypothesis (1.10').

The hypothesis (1.10) is composed of two cases: (1.10') and the

case that bit) is not constant on any interval interior to 0 ^t ;£ P but

bit) = 0 on Fí£í< »o, for some P< co. The latter is treated, however,
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much like the former. Instead of Xn—> 00, one obtains, by the above

argument,

lim inf (X„ - 7„) â T.
n—*<A

Replacing Xn in (3.12) by \n— ynJ one proceeds as before to obtain

(3.3).
(ii) Only slight changes are required in the argument of (i) in order

to prove that

/» oo
b(t)dt^f(co).

0

For example, in place of (3.4), the sequences \tn}, \t*},  {«„j are

now chosen to satisfy the following conditions, where again x<x<x:

tn -* °° , in — in-1 ~> °° , x(tn) —> X, e„ -> 0 (n —» oo ),

x'(in) = 0, x(tn) < x, x(tn) > x, tn+i > 0       (ra = 1, 2, • • • ),

0 < tf < h, i„_i < t* <tn       (» - 2, 3, • • • ),

X(t)   è X - €» (tn-1 ^ t <   » J » - 2, 3,  •  •  • ).

We omit the remaining details.

(iii) It follows immediately from (1.4), (1.6), (3.3). and (3.15) that

x(oo) exists and satisfies (1.13). The result (1.14) is a consequence of

&'(¿)GFi(0, oo), (1.11), (2.1), and the existence of x(oo), which com-

pletes the proof.

Note. Equation (1.1) has recently been studied by A. Friedman in

On integral equations of Volterra type, Journal DAnalyse Mathé-

matique 11 (1963), 381-413. In this work it is assumed that/(i) is

positive and satisfies some monotonicity conditions depending on

HO.
Added in proof. The lemma below is tacitly assumed in the proof

of Theorem 1 as given in §2. As its proof is not obvious, one (due to

S. V. Parter) is supplied here. With the aid of this lemma, inequality

(2.2) as well as the step from (2.4) to the inequality which follows it

are readily verified. The terms 0 and /(0) appear in these two places

because of the condition x(t) >0 in the definition of â (this last condi-

tion is used in (2.3)).

Lemma. Let u(t)EC'[t0, h], — =° <f0<ii< °°, and let v(t)

= maX(oSTSi u(r). For t0<t<ti, define

I = {/| u'(t) > 0, u(r) < «(/) (to^ r < t)},

J = {t\ v'(t) exists, v'(t) > 0}.
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Then I=J, u(t) =v(t) and u'(t) -v'it) for tEI, and

till) = uito) + J ' u'ir)dr.

Proof. Let Af=max|«'(i)| on [to, h]. From the definition of vQ)

it follows readily that |»(ti) — ü(t2)| ^M\n — t2| for n, t2G [to, h].

Thus vit) is absolutely continuous on [to, h] and as vit) is also non-

decreasing one has

»(ii) = uito) +  I   V(t) dr = uito) +  I  b'(t) dr.

Clearly IE J and «(/) =»(í), íí'(í) =»'(í) for f£P
Conversely, suppose ¡EJ- From the definitions of vit) and / it fol-

lows that uií)—v(t). Hence for t<t one has vil)— s(í)^m(í) — w(¿)

which, on dividing by < —/>0 and letting t—*i, implies w'(i)=^'(0-

As it is clearly impossible for u'i~t)>v'i~t) with m(í)=z>(í), one has

«'(i)=»'(i)>0. Also, for toúKt, one has u(t)úv(t) <v(ï) =u(T).

Hence tEI and all of the assertions now follow.
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