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The starting point of this study was an attempt to solve a problem

proposed by G. M. Rosenstein [3] in his doctoral dissertation.

Rosenstein's problem. Suppose that R is a metrizable space,

dim R ^ n (covering dimension), and p is any compatible metric for

R. Then is it true that there exist n pairs of closed sets C\, C{, • • • ,

Cn, Cn' such that (i) p(C(, C[)>0 for all i and (ii) if for each i, Bi

is a closed set separating C, and CÍ, then f|"=i Bi9i0?

Remark. If, in this problem, "(i) p(C„ C,-)>0" is replaced by

"(i*) CiC\Ci = 0," one obtains a characteristic property for metric

spaces R such that dim R}zn. (See [l, Remark, for the separable

case, p. 78].)

Our main result is an example which shows that the answer to the

problem is in the negative. In the notation given below, our example

is a metric space (R, p) such that dim R = 2 and d2(R, p) = 1. For n — 1

the problem is answered in the affirmative.

Definition of di(R, p). Let (R, p) be a metric space with metric p.

We define di(R, p) inductively as follows: For the empty set 0,

di(0, p) = — 1. If for every pair of closed subsets F, H of R with

p(F, H)>0 there exists an open set G with FC.GC.R — H and with

di(G — G, p*) áw —1, where p* is the restriction of p to G — G, then we

say di(R, p) = «. If there is no such integer n, then we say di(R, p) = ».

Theorem. For any metric space (R, p) we have di(R, p) = Ind R,

where Ind R is the large inductive dimension of R defined by means of

sets separating disjoint closed pairs of subsets.

Proof. It is evident that di(R, p) ^ Ind R. When di(R, p) = », it

is also evident that di(R, p) è Ind R. Hence we suppose that di(R, p)

¿n and make the induction assumption that di(R', p')èlnd R' for

any metric space (R', p') with di(R', p')ûn — l. Let H and F be dis-

jointclosedsubsetsofP.Put.E>¡= {x:p(x,H) <1/i],andEi= {x:p(x, F)

<l/*},t = l, 2, •••. Then there exist open sets Mi with HQMi

QDi, d\(Mi—Mi, p)ún — 1, t = l, 2, • • • , and open sets Ni with

FQNiCEi, di(Ñi-Ni, p)ún-l, i = l, 2, • • • . Put G<-Af<-37,-,
i' = l, 2, • • • , and G = U/lx G¿. Then it can easily be seen that HÇ.G

CGCR-F.
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Since Gi-GiC(Mi-Mt)yj(Ni-Nt), we have Ind(Gi-Gi) ^«-1
by the induction assumption. Since {G,-:í = 1, 2, • • • } is locally

finite at every point of R — (H\JF) and G — G is contained in

R-(H\JF), we have G-GCU {G¿-G¿: ¿ = 1, 2, ■ ■ ■ }. Every point
x of G — G has a relative neighborhood U(x) which is contained in

the sum of a finite number of elements of {G, — G,:î = 1, 2, • • • }.

Hence Ind U(x) ^« — 1 and we have Ind(G —G) ̂ « — 1 by the local

dimension theorem. Thus we know lnd R^n and the theorem is

proved.

Corollary. If Ris a metrizable space with dim R = 1 and p is any

compatible metric for R, then there exists a pair of closed sets C and C'

with p(C, C')>0 such that the empty set cannot separate Cand C.

Definition of d2(R, p). Let (R, p) be a metric space with metric p.

We write d2(0, p) = — 1. If there exists a greatest integer n such that

there exist n pairs G, C{, • • • , C„, C„' such that (i) p(d, G/)>0

and (ii) if for each i, Bi is a closed set separating R between C< and

d, then n"-i Bíj¿0, then we say d2(R, p)=n. Otherwise d2(R, p)
= ».

Rosenstein 's problem may now be stated as follows : Is it true that

d2(R, p)= dim R}

Example. In the closed 3-cell P we define a countable disjoint

collection a-j¿<:«-l, 2, • • • }, set A=\ia and R = P-A. We
prove that dim R = 2 and d2(R, p) = 1, where p is the Euclidean metric

on P. Let 11= { Ui, U2, ■ • • } be any countable base for the topology

of P. The set of all finite unions of elements of 11 is countable; hence

so is the set of all quadruples of such unions and, a fortiori, any sub-

set. Thus there exists a countable sequence Qi, Q2, • • • , such that

for all i

(1) Qi~{Bit CuD^Ei),
(2) each of B{, d, Dt, Ei is a finite union of elements of 11,

(3) p(Bi, d)>0 and p(D{, £,)>0, and

(4) if Q'= {B', C', D', E') is any quadruple satisfying (2) and (3)

then for some i we have Q' = Qi.

For each i we define closed sets M¿ and N{ such that Mi separates

Bi and C<, Ni separates Di and Eit and we set A ,• = MíC\Ní. We want

ß = {A,: i = I, 2, ■ • ■ } to be a disjoint collection. Let €¿

= min \p(Bi, Ci), p(Di, E{)}. Let n, wí, ir2, ir2, ■ ■ ■ be a monoton-

ically increasing sequence of prime numbers such that for all i,

l/iri<e,7\/3. Divide P into 7rf small closed cubes whose edges have

length 1/Vj, let Hi denote the union of all such cubes that intersect

Bi, and let M¿ = boundary of Hi. Similarly, using ttÍ instead of 7r¿,
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let Ki be the union of all small cubes intersecting D{ and let Nt

= boundary of Ki. Set Aí = MíC\Ní. If x(EAit then one coordinate

of x is of the form a/iVi and one coordinate is of the form b/ir', where

a and 0 are integers, 0 <a <7r¿, 0 <b <tt,- .

Assertion 1. For all i, M{ is a closed set separating P¡ and d

and TV*,- is a closed set separating P< and E¡.

Assertion 2. For all i, A{ is closed and dim -4<íál.

Proof. If a and 0 are positive integers with 0<a<7r,-, 0<o<ir/,

then a/iTi^b/irl ; hence if x(E.Ait then at least two of its coordinates

are rational. By [l, Example III 6, p. 29] this shows that dim A(^\.

Assertion 3. If i^j, then AíC\Aí = 0.
Proof. Assume there exists xCzA¡C\Aj. Then there exist four

integers 0<a<w¡, 0<b<w'¡, 0<c<Wj, 0<d<ir,r such that x must

have coordinates equal to each of a/V,-, b/ir{, c/ttj, d/ir¡, four distinct

numbers. But x has only 3 coordinates.

Assertion 4. d2(P, p) è 1.

Proof. Let B, C, D, E be any relatively closed sets in R such that

p(P, C) > 0, p(P, P) > 0. Then their closures in I3 are compact and for

some i we have B CP¿, CC C», P C-P» and P CP. ; so Mi separates B

and C in f3, TV, separates D and P in I3. But then M.-HP and NiCMt

are corresponding separating sets in R, and their intersection is

vacuous since MíC\Ní = AíC.P—R.

Assertion 5. dim P^2.

Proof. This follows from Brouwer's theorem on invariance of do-

main, since it can easily be seen that A is dense in I3.

Assertion 6. dim P^2.

To prove this assertion we need the following two lemmas.

Lemma 1. Let S be a subset of the closed n-cell I" with dim S^n — 2.

Then for any points p and q in I" — S there exists a continuum K such

that (i) K is contained in I" — S and (ii) K contains p and q. iSee

[4].)

Lemma 2. A continuum cannot be decomposed into a countably in-

finite or finite (but more than one) union of pairwise disjoint closed sub-

sets. iSee [2, Theorem 44, p. 30].)

Proof of assertion 6. Assume that dim P<2. If A is closed, then

P is an P, and dim 73^max(dim A, dim R) <2, which is impossible.

Thus there exist integers i and j with ij^j such that Ai9é0, Aj9£0.

Take £G^4>, SG-^,-- By Lemma 1 there exists a continuum K such

that (i) {p, q) CK and (ii) KCP-R = A. Thus X = U<11 (Zni¡),
a countable union of pairwise disjoint closed sets at least two of which
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are not vacuous. But this is impossible by Lemma 2, so the proof of

Assertion 6 is completed.

Assertion 7. d2(R, p) = 1.
Proof. Since dim R = 2, d2(R, p)^ — 1. It is obvious that d2(R, p)

= 0 if and only if di(R, p) = 0. On the other hand we already know

that di(R, p) =dim R by the above theorem. Thus d2(R, p) < 1 contra-

dicts dim i? = 2.

Remark. By a construction quite similar to that just given, one

may start with In for «>3, and define a subset R such that dim R

= n — l and d2(R, p) Un/2.

Problem. Is it true that, given a metric space (R, p), dim R 2: n im-

plies thatd2(R, p)^»/2?
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