SIMPLY INVARIANT SUBSPACES AND GENERALIZED
ANALYTIC FUNCTIONS!

T. P. SRINIVASAN

Let (X, m) be a probability measure space and 4 a subalgebra of
L*(dm) on which m is “multiplicative,” meaning,

ffgdm=ffdmfgdm

for all f, g€ A. Let A, be the set of functions in 4 with [f dm=0. De-
note by H?(dm) the closure [4], of 4 in L?(dm), p=1, 2 and by
H=(dm) the weak* closure [A4 ]« of 4 in L=(dm). We shall drop the
parenthesis (dm), in the future, while referring to L?(dm) H?(dm),
etc. The functions in H? we call generalized analytic functions.

Say that a closed subspace I of L? is simply invariant if [4o,M],
C I and the inclusion is strict. For logmodular algebras A it was shown
in [5] that the simply invariant subspaces of L? have the form ¢H?
where g€ L? and |g| =1 a.e. We shall refer to this result as the “L?-
invariant subspace theorem.” The proof in [5] also shows that the
logmodularity of A4 is inessential for the truth of this theorem, that
the Ll-theorem follows from the L2-theorem and the following two
conditions are sufficient for the truth of the L2-theorem:

H;. A+4 is dense in L? where the bar denotes complex conjuga-
tion.

H,. If fELY, f=0 and if [fg dm=0 for all gE A4, then f=c a.e. for
some constant c.

It turns out that these two conditions are necessary as well for the
validity of the L2-theorem. One of our purposes in this paper is to
prove this (Corollaries 1.1, 2.4). The key to our proof is a factoriza-
tion theorem (Theorem 2) used (but not explicitly stated) by us in
[5] to derive the L!-invariant subspace theorem from the L2-theorem.
We derive on the way, from this factorization theorem, several con-
sequences on generalized analytic functions which were proved by
Hoffman [3] in the special case of logmodular algebras; Hoffman’s
machinery was different and more elaborate. Our proof of the L!-
invariant subspace theorem in [5] had some gaps. We rederive this
theorem here (Corollary 2.5) for completeness. The L!-theorem in
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1 This work was done while I held a visiting appointment at the University of Cali-
fornia, Berkeley. I thank Professors Henry Helson and Ju-kwei Wang for the useful
discussions I had with them.
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its turn leads to an L*-invariant subspace theorem (Theorem 3)
which as an immediate corollary yields a maximality theorem for H*
(Corollary 3.1). In case X is the circle | z[ =1, m the Lebesgue measure
and A4 the algebra of analytic trigonometric polynomials, this maxi-
mality theorem was proved by Hoffman [4, p. 193] using a theorém of
Gleason-Whitney. In [1] Bochner extended the theorems established
by Helson Lowdenslager in [2] to a general class of algebras. The
algebras considered by Bochner satisfy our hypotheses H; and H,
above [6], [7] so that our results are valid in Bochner’s set up. Thus
this paper captures some of the results considered by Bochner and by
Hoffman and offers some new results in a set up more general than
and by a machinery different from theirs. The only hypothesis in our
set up is the validity of the L*-invariant subspace theorem or its equiv-
alent assumptions H; and H, stated earlier.

Since writing this paper we have been able to show in collaboration
with Professor Ju-kwei Wang that essentially all the results of Boch-
ner [1] and of Hoffman [3] are valid in their full strength in our set
up and that no weaker assumption than ours can yield any of their
major theorems. These and other cognate results will be published
separately.

We assume that A is a subalgebra of L* on which m is multiplica-
tive and that the L%-invariant subspace theorem is true for 4. We
shall use the symbol ¢ with or without subscripts to denote a mea-
surable function with absolute value 1 a.e. Let

Ho = {f|f€H”, ffdm=0}, H; = {f:feH“’, ffdm=0}.

It is easy to see that HZ = [A4,],, and Hy = [4]+. We have
THEOREM 1.
L'=H oH,.
PRrOOF. Let M=L2EH;. Then M is a simply invariant subspace
of L2, so M =gH? for some ¢. Since M contains constants, §& H2. Let

¢=/[Gdm. Then §—¢E H}, so ¢—cE Hi. But ¢,c and hence ¢g—cEM
and so ¢—c.LH}. Hence g—c=0 and It =H?.

COROLLARY 1.1. A+4 is dense in L? (and hence in L* for 1 S p £2).
COROLLARY 1.2.

H'MN L* = H2,
For, if f€ H'N\L? then f 14, and hence also f L H:. So f&€ H2. This
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shows H'M\L2C H?. The reverse inclusion is trivial.
We shall say that A€ H? is outer if [hA],=H?, p=1, 2. The follow-
ing factorization theorem is very useful for applications.

THEOREM 2. If fEL! and f& [fAols, then f=F h where hE H? is
outer with |h|*=|f| and FE [fA\NL

Proor. Factor f as fi f; where fi = (sgn. f) |f| U2 and fo= lfl 12, Then
f,'ELZ, 1= 1, 2. Now f2 @ [szo]z, otherwise f=f1fz€f1 [f2A0]2 C Lon]l,
contrary to our assumption. Hence [fa4 ]; is a simply invariant sub-
space of L2 Let [f,4 ]o=g.H? Then f,=g:;h for some h€ H?, outer,
and |k|?=|fo|2=|f|. Let F=figs. Trivially FEL?. Also

F = fig; € f1g:H? = fi[f24]s C [f4]s.

Of course f= Fh.

ReMARKs. (i) The proof shows that we need only assume that
|| 2 [|£] 1/240]: in place of f& [f4o]: for the validity of the theo-
rem. Actually the two conditions are equivalent both being equal to
Jlog |f|dm> — © but we shall not prove this here.

(ii) An outer function with given modulus is easily seen to be
unique (up to multiplication by a constant of absolute value 1). It
follows that the & above is uniquely determined by f. We may call &
the outer part of f.

COROLLARY 2.1. If fELY, f& [fAols then f=qh? for some q where h
s the outer part of f.

For, then [FA], is simply invariant subspace of L? and hence
[FAl,=qH? for some gq. So F=qgh' where W'EH? is outer. Since
|W'| =|f|*2=|n| and R/, h are both outer we may assume that
b =h.

For logmodular algebras this corollary is essentially Theorem 5.9 in

[3].

CoROLLARY 2.2. If fEHY, f& [fAo]s then f=hihy where h. < H? for
i1=1,2.2

For, then FE [Af\\L*CH!NL*=H?,

CoROLLARY 2.3. If fEL' and [fg dm=0 for all gE A, then fE H!
(and trivially conversely).

For, by considering f+¢ for some constant ¢ if necessary, we can

* | owe this remark to Professor Calvin Moore.
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assume that [f dm 0. Then f& [f4,]: and so by the main theorem,
f=Fh. Since FE [Af]; it follows that [Fgdm =0 for all g& 4,. Also
F& L2 So FEH? by Theorem 1. Hence f& H*.

For logmodular algebras this is Theorem 6.1 in [3]; the proof in [3]
is involved.

COROLLARY 2.4. If fEL!, f20 and [fgdm=0 for all gc A, then
f=c a.e. for some constant c.

For, we can assume as in Corollary 2.3 that [fdm 0 so that
f& [f4o]i. Using the notation in the proof of Theorem 2, we have then
f=Fh where F=f!2g;, and f!/2=g,h. As in Corollary 2.3, FEH?2 It
follows that both f/2g, and f'/2g,& H?. This implies by Theorem 1
that f1/2g;=¢ for some constant ¢. Then f1/2=|¢|, so f is a constant
a.e.

COROLLARY 2.5. The L'-tnvariant subspace theorem: If I is a simply
invariant subspace of L then I =qH* for some q.

For, let N=MNL? and fEM\[4,Dt];, where \ denotes the set
theoretic difference. Then f=Fk by Theorem 2, where A& H? and
FEMNL:=N. Also f& [4,M]., for otherwise,

f=Fh& [AN]:h C [40]: C [4:Du.

contrary to our assumption. It follows that RN is simply invariant. Let
N =gH? We shall show that I =qgH'. From the above we can con-
clude that I\ [4 D] CgH*. Also the algebraic sum

[4M]: + ON\[4M]1) T DN\[4D]y).

Hence [4,M ] CgH!. Hence M CgH". The reverse inclusion is trivial.
REMARK. It can be shown that the L!-invariant subspace theorem
is in fact equivalent to the L?-theorem. We shall not prove this here.
We introduced H> as the weak* closure of 4. We note the following

LEMMA.
©=H'NL*= H*N L*.

ProoF. Only the first equality is nontrivial. Clearly H'*N\L*DA.
It is immediate from Corollary 2.3 that H' L= is weak* closed. It
follows that H*ML*DH=. If the inclusion were strict, by the Hahn-
Banach Theorem there would exist a linear functional I on L* which
is zero on H* but not on H'N\L>. Let I be realized by the L! function
f- Then, for every g€ 4

I(g) = fgfdm = 0.
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By Corollary 2.3, f€ Hg. Thisimplies that fgfdm =0forall g€ H'NL>,
contradicting our assumption on I. Hence we conclude that H'\L»
=H®,

For any subset I of L=, let

mt = {fELl:ffgdm=0 forallgE?D?}.

For any two subsets I, N we shall write M <N to signify that
P CN and the inclusion is strict. We shall say that a subspace I of
L= is simply invariant if it is weak* closed and [4 I ]« <M. We have

THEOREM 3 (L®-INVARIANT SUBSPACE THEOREM). Every simply in-
variant subspace M of L= is of the form ¢H= (and trivially conversely).

Proor. Let 9 = [4 M ]«. Then i (where the bar denotes complex
conjugation) is clearly a closed subspace of L! and is invariant for
multiplication by functions in A. Also 4J CM-<Mi. The last
inequality results from our hypothesis I <M, by an application of
the Hahn-Banach theorem. It follows that ¢ is a simply invariant
subspace of L! and by Corollary 2.5, is of the form gH!. Then T
=gHy. In particular, g4It CHy so that for every fEGM, [fg dm=0
for all g€ 4,; it follows by Corollary 2.3 and the lemma above that
gMCH'NL*=H>. Thus

gHo = M <M C qH".
The extreme spaces differ by dimension 1; hence It =gH®,

COROLLARY 3.1.2 Any weak* closed subalgebra of L which contains
H> and is simply invariant, coincides with H*.

For, let B be such an algebra. By Theorem 3, B=¢H> for some gq.
Since B is an algebra containing ¢, ¢2€ B=¢H>; so ¢& H®. Since B
contains constants, §& H®. It follows that ¢ is a constant a.e. Hence
B=H~>.

In the special case when X is the circle | z| =1, m, the (normalized)
Lebesgue measure and 4, the algebra of analytic trigonometric poly-
nomials, if B is any weak* closed subalgebra of L® which contains
H, then either B is simply invariant and the above corollary applies
or zZB=B, so B contains Z and its powers together with z and its
powers; and hence B=Lx. Thus in this case we have

COROLLARY 3.2. H® (of the circle) is a maximal weak* closed sub-
algebra of L*.

3 This arose out of a discussion with Professor Ju-kwei Wang.
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We do not know whether this strengthened version of Corollary 3.1
is true in the general case.

Next we show that H* is a logmodular algebra on the maximal ideal
space £ of L®. We recall that a subalgebra B of the algebra C(X) of
all (complex) continuous functions on a compact Hausdorff space X
is logmodular if

(i) B is uniformly closed, contains constants and separates points;

(ii) the set of functions log I f | , where f, 1/fEB, is uniformly
dense in Cg(X), the algebra of real continuous functions on X.

We have

THEOREM 4. The algebra H® with the m-essential supnorm is a log-
modular algebra on the maximal ideal space Q of L*.

Proor. Only the condition (ii) above needs to be verified. Let « be
any real valued function in L®. Clearly e* e H}, so e*H? is a simply
invariant subspace of L2 Let e*H?=¢H? Then e*=¢qh for some
hEH*NL*=H>, Since g=e"h’ for some h'E H? we have hh'=1; so
h is invertible in H*. Also u=log |#|. This shows that H= is log-
modular.

For logmodular algebras 4 this is the Corollary to Theorem 6.4 in

[3].
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