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There are a number of results in the literature which affirm the

symmetric structure of functions in terms of Cluster Sets. For exam-

ple, W. H. Young [5] showed that an arbitrary function/: R-+R has

a remarkable symmetry property which may be stated in terms of

Cluster Sets. A real number y is a right limit of / at xER if there

exists a sequence xn>x, n = l, 2, • • • , such that limxn = x and

Mm f(x„)—y. A left limit of / at xER is defined similarly. These

sets we designate by C+(f, x) and C~(f, x), respectively. The result of

Young asserts that C4" (/, x) = C~(f, x) at every xER — A where A is

a countable set.

Young obtained an analogous result for functions of two variables.

By a sector at the origin, we mean either of the closed regions formed

by two half-lines emanating from the origin. If a is a sector at the

origin, then we designate by ap the image of a under the translation

taking the origin into p. Let/: R2-+R be arbitrary and let pER2. The

Cluster Set, C(f, p), of /at p is the set of all real numbers w for which

there exists a sequence {pn} ER2 such that lim pn=p and lim f(pn)

= w. If <r is a sector at the origin, then The Sectorial Cluster Set,

C(f, p, aP), is defined in the obvious manner. The result Young ob-

tained in this case is that

C(f,p) = Cl[C(f,p,<rp):o-p]

at every pER2 — A, where A is of the first category and planar mea-

sure zero, but not necessarily countable.

Various writers such as H. Blumberg [2], F. Bagemihl [l], P.

Erdös and G. Piranian [3], M. Kulbacka [4] and others have studied

the properties of Cluster Sets of arbitrary functions and obtained

some rather interesting results along these lines. The purpose of this

note is to observe a common genesis for certain of the theorems that

appear in the papers of Young [5], Erdös and Piranian [3], and

Kulbacka [4], after which some examples are given indicating some

of the theorems that are involved. We need the following definitions:
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Definition 1. Let S be a set. A collection M of subsets of S is

called a cr-ideal of sets in S if,

(1) AEM,BEA implies BEM,
(2) AnEM, n = l, 2, ■ ■ ■  implies \J^AnEM,

(3) SCtM.
Definition 2. If 5 is any set and M is a cr-ideal of sets in S, then

two topologies t and t' are said to be associated modulo M if for every

subset A ES the t and /' derivatives of A differ by a set in M.

Definition 3. Let / be a topology on a set S and let /: 5—>R be

arbitrary. The ¿-Cluster Set, Ctif, x), of /at x E S is the set of all real

numbers y such that for each e>0,

xE[f-liiy-e, y+e))]l,

(i.e. x is a /-limit point of the set f~1Hy — «, y + e))).

Theorem. Let M be a a-ideal of subsets of a set S and let t and t' be

topologies on S which are associated modulo M. If f: S-+R is arbitrary,

then Ctif, x) = Cfif, x) at every xES—A, where A EM.

Proof. We observe that,

{x:Ctif,x) ¿¿Cfif,x)} = EKJF

where

F = {x: Cfif, x) C Ctif, x)}    and    E = {*: Ct(f, x) <£ Cvij, x)}.

We show EEM. Let xEE. There is a real number y such that

xE\j-\iy-t, y+e))]l for every e>0 and x£ [f'^iy -«,, y+e0))]'r

for some eo>0. Thus there are rational numbers, ru r2 with rx<r2

such that

x E [f~\irh r2))]'t   and    x $ [f\(ru r2))]i'.

If we let

Sn. ^ = {x: x E [f    iin, r2))]'t    and    x $ f/_ ((r1( r2))]i,},

then it follows easily that

FC   U   Eri,rr
ri<rï

Applying the definition of associated topologies, we see that ETx,riEM

for every pair of rationals r%, r2 and, since £CUn<r2 -Eri.ra, it follows

that EEM. A similar argument shows that FEM which completes

the proof of the theorem.
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We would now like to give some examples which exhibit some

relationships between the notion of associated topologies and the

theory of Cluster Sets.

Example 1. Let R denote the real line. Let ß= { TER: xET im-

plies there exists an tj>x such that [x, ?j) ET} and let ju' = {TER:

xET implies there exists an r¡<x such that (??, x]C7}. It can easily

be shown that ju and // are topologies on R which are associated

modulo the cr-ideal of countable subsets of R. This gives us the theo-

rem of W. H. Young [5]:

Theorem (W. H. Young). Iff: R-+R is arbitrary and if C+(f, x)
and C~(f, x) denote the sets of right and left limits of f at x, respectively,

then C+(f, x) = C~~(f, x) at every xER — A where A is a countable set.

Example 2. Let r = { TER: T is measurable and either T is empty

or xGT implies D^(T) = l} and let t'=\TER:T is measurable

and either T is empty or x ET implies D~(T)=l}. (Here the symbols

D~(T) denote the upper right and upper left densities of T at x,

respectively.) In this case one can show that t and t' are topologies

on R, which are associated modulo the cr-ideal of sets of the first cate-

gory and measure zero. This gives us the following theorem due to

M. Kulbacka [4] on the approximate limits of an arbitrary function:

Theorem (M. Kulbacka). Let f: R-^R be arbitrary. If w+(x) de-

notes the set of right approximate limits of f at x and w~(x) denotes

the set of left approximate limits of fat x, then the set {x: w+(x) 9éw"(x)}

is of the first category and measure zero.

Let pER2- If <r is a sector at the origin, then we designate by o-p¡i the

set

ap H S(p, Ô)

where S(p, 5) is the closed disc with center p and radius 5>0.

Example 3. Let a be a sector at the origin and let r denote the

Euclidean topology on R?. If r' = { TER2: for each pE T there is an

e>0 such that oP,,ET}, then the following conditions are satisfied:

(1) t' is a topology on R2.

(2) t and r' are associated modulo the cr-ideal of sets of the first

category and measure zero.

(3) If <r>180°, then t and t' are associated modulo the cr- ideal

of countable sets.

Applying the theorem to this example we get the following theorem

of W. H. Young [5] : let/: R2->R be arbitrary and let C(f, p) denote
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the Cluster Set of / at pER*- If a is a sector at the origin, then we

designate by Cif, p, crp) the Sectorial Cluster Set of/at p.

Theorem (W. H. Young). For every f: R2—>R,

C(f,P) = f\[C(f,p, <r,):<r,]

at every pER2—A, where A is of the first category and planar measure

zero, but not necessarily countable.

Also, in connection with Example 3, we would like to mention

that in [2], H. Blumberg pointed out that if the angles of the sectors

considered exceed 180°, then the countable character of the excep-

tional set A is restored.
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