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1. Introduction. Let {bi} be a basis for a linear topological space,

and let {j8¿} be the sequence of corresponding "coefficient functionals. "

Following Arsove and Edwards [l], we refer to {bi} as a Schauder

basis provided each ßi is continuous. If {&»} is a basis for a linear

topological space T, then each x^T has a unique representation of

the form x = ]>3" x¿ where x, is an element of the one-dimensional

subspace spanned by bi. Thus it is natural to attempt to generalize the

concept of a basis {b{} by replacing the &¿'s by subspaces. A sequence

{Mi} of nontrivial (not necessarily closed) subspaces of a linear top-

ological space T is a decomposition of T provided for each ïGT there

exists a unique sequence }x¿} such that x¿£Af< for all ¿and x= yi,°° %..

Associated with a decomposition {Mf} is a sequence {Pt} of projec-

tions (where projection is used in the sense of Taylor [8, pp. 240-

242 ]) defined by Pj(x) = x¡ where x = ^3" Xi is the unique representa-

tion of x in terms of the decomposition {Mi }. (Note that for each i,

Mi is the range of Pi, and that PiPj(x) =0 if i^j and PiP¡(x) =P¿(x)

if i =j.) In view of the above terminology for bases, it is natural to call

a decomposition a Schauder decomposition provided each of the asso-

ciated projections is continuous. (The reader is referred to [6] for a

brief sketch of the history of these concepts.)

Let {bi} be a basis of a linear topological space T and let {ßi} be

the corresponding sequence of coefficient functionals. For each i let

Mi be the one-dimensional subspace of T generated by x¿. Then

{Mi} is a decomposition of T. Further, if {Pt} is the sequence of

projections associated with {M¿}, then P,(x) =j3¿(x)&¿ for all x£7\

Clearly {bi} is a Schauder basis of T if and only if {Mi} is a Schauder

decomposition of T. In the second section of this paper we give an

example, due to Charles W. McArthur and reproduced here with his

permission, of a Schauder decomposition of a nonseparable Banach

space. Thus it is seen that the concept of a [Schauder] decomposi-

tion is a generalization of the concept of a [Schauder] basis. Although

every basis in a Banach space is a Schauder basis, it is not true that
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every decomposition of a Banach space is a Schauder decomposition.

(See Example 2 in §2.) In §3 we discuss the decomposition questions

corresponding to the classical basis question of whether every separa-

ble Banach space has a basis. In particular it is shown that every Ban-

ach space has a decomposition and that certain Banach spaces have

Schauder decompositions. The author does not know whether every

Banach space has a Schauder decomposition. In fact, the author does

not know whether (m), the space of bounded sequences of real num-

bers with the sup or uniform norm, has a Schauder decomposition.

However the following related result is established in §3.

Theorem (m). There does not exist a Schauder decomposition {Mv}

of (m) for which each of the unit vectors e< = {ôy}í11 (t = 1, 2, • • • ) lies

in a distinct subspace MP.

2. Examples.
Example 1 (McArthur).^4 nonseparable Banach space and a Schau-

der decomposition for it. Let X be a nonseparable Banach space, and

let ca(X) be the collection of all sequences in X which converge to

zero. The set c0(X) is made into a nonseparable Banach space by us-

ing the point-wise definitions of vector addition and scalar multipli-

cation and the sup or uniform norm. For each positive integer i let Mi

denote the collection of all sequences belonging to c0(X) for which all

entries, except possibly the ith one, are zero. One can show that { M¿}

is a decomposition of X and each Mi is closed. Now Theorem 3 in

[5] states that in a complete metric linear space, a decomposition is a

Schauder decomposition if and only if each of the subspaces in the

decomposition is closed. (The necessity is clear [8, Theorem 4.8-C,

p. 241]. For a Banach space the sufficiency follows by renorming the

space by |||a:||| = sup„ || ]C"-i -P¿(x)||> using the closedness of the M/s

to establish the completeness of the new space, establishing the con-

tinuity of the identity map from the new space into the old, and using

the resulting continuity of the identity map from the old space to

the new to establish the continuity of the projections.) Hence it is

seen that {Jli.j is a Schauder decomposition of c0(X).

Example 2. A decomposition of a Banach space which is not a

Schauder decomposition. Let P be a projection from (w) onto (c0), the

subspace of (m) consisting of sequences which converge to zero. Let

Mi = N{P), the null space of P, and let M, be the span of c,_i for

i = 2, 3, • • • . Thus {Mi} is a decomposition of (m). However,

Sobczyk [7] has shown that P is not continuous. Thus, since the

range of P is (c0) and (c0) is a closed subspace of (m), Mi = N(P) is

not closed. Thus since the range of the projection, Pi, associated with
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Mi, is Mi, Pi is not continuous [8, Theorem 4.8-C, p. 241], and {M,}

is not a Schauder decomposition of (m).

3. Existence theorems. Using the result of Banach [2, p. 238]

that every infinite dimensional Banach space X has a closed subspace

Xi which has a basis (for a proof of this result see Gelbaum [4, p. 29]

or Day [3]), one easily proves (using the method of the preceding

example with (m) replaced by X and (c0) replaced by X{) the follow-

ing theorem.

Theorem 1. Every infinite dimensional Banach space (or normed

linear space) has a decomposition.

Although the author does not know whether every infinite dimen-

sional Banach space has a Schauder decomposition, it is easy to ob-

tain the following result.

Theorem 2. Every separable Banach space which has a subspace

which is isometrically isomorphic to (c0) has a Schauder decomposition.

This result is established by using the method of the preceding

example and/or theorem and Sobczyk's result [7, p. 946, paragraph

2] that every separable Banach space having a subspace which is

isometrically isomorphic to (c0) admits a continuous projection onto

that subspace.

We turn now to the proof of Theorem (m). First we establish the

following lemma.

Lemma. If \MP) is a Schauder decomposition of (m), {Pp} is the

associated sequence of projections, and i is a one-to-one function of the

positive integers into themselves, then the function P defined on (m) by

P(*) = {-P.-c/>.yO)}"-i,

(where Pi,k(x) denotes the kth entry of the sequence P,(x)), is a continu-

ous linear operator from (m) into (c0).

Proof. We first show that P(x)G(co) for all x =

e>0 be given. Since { ̂ " Pk(x) }T-i converges to {x

exists an N such that for all n^N and for all m,

Xi] £(»*). Let

in (m), there

(1)

Now for i(j)^2,

(2) |P*wj(»)|   Ú

**m / (   * k,m\?C)

US)

Z Pk.i(x) - Xj
*—1

< i/2.

+

»(y)-l

*i- Z) -p*,/(*)
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From (1) and (2) it follows that | P¿o) ,/(x) | <e for all sufficiently

large j. Hence P(x)E(c0). The function P is clearly linear, and we

need only show that P is continuous. For each n, let Un = ^" Pk.

Thus { Un} is a sequence of continuous linear operators on (w) such

that {Un(x)} converges for each x£(m). By [2, Theorem 5, p. 80]

there exists a real number K such that || Un\\ ikK for all n. Hence

||P,-|| = 2i£ for allj. Thus for each x£(m) and for each j, |Pi(/),,-(x)|

:£su pn |Ptü),n(x)| =||P¿(;)(x)|| ^2isC||x||. Hence for each xE(m),

||P(x)|| = 2X||x||, and P is continuous.

Proof of Theorem (m). Assume that {Mp} is a Schauder decom-

position of (m), and that each of the unit vectors e¿ (i= 1, 2, • • • ) lies

in a distinct subspace Mv. Then there exists a one-to-one function i

from the positive integers into themselves such that ejGií¡(,-) for

all j. Let {PP} be the sequence of projections associated with {Mp}.

We will show that the operator P defined in the above lemma is a

projection from (m) onto (c0). This will be a contradiction to the re-

sult of Sobczyk, referred to in Example 2 above, that there is no

continuous projection from (m) onto (c0), and the theorem will be

established. By the above lemma it is sufficient to show that

(1) P(x) = x   for all x £ (co).

Since each x£ (c0) has a unique representation of the form x = Xà°° &*£*

and since P is linear and continuous, to establish (1) it is sufficient

to show that P(ek)=ek for each ¿ = 1,2, • • • . Since ekE.Mi(k),

PiU)M=0 if i(j) ¿¿i(k) and P«,-)(ß*) =ek if i(j) =i(k). Hence if jVfe,
PiU),Âek) = 0, and if j = k, P«y) ,,(c») = 1. Hence P{ek) = {P<u),y(e*) }".i

= ek.
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