
A COMPACT CONVEX SET IN £3 WHOSE EXPOSED
POINTS ARE OF THE FIRST CATEGORY

H. H. CORSON

1. Introduction. The extreme points of a convex set Z in a linear

topological space L are those points of Z which are interior to no seg-

ment contained in Z. Among the extreme points, the exposed points

are those x for which there is a continuous linear functional on L

which assumes its Z-maximum exactly at x.

One of the significant properties of the set E of extreme points of Z

is that its convex closure is dense in Z when Z is compact and L is

locally convex. Therefore, any dense subset of E will also have this

property. If L is finite dimensional, the set Ep of exposed points of Z

is dense in E; there is even a similar theorem for the case where Z is

compact metric [2; p. 81, Remark 7(b)].

However, when Z is compact metric, E is of the second category in

itself; in fact, E is a Gj in Z. Consequently, it has been asked if Ep

has these properties. (For an account of these questions, see [3].)

This is known to be true if Z is in E2. As the title states, it is false

in£s.

As for the method of construction of this example, we shall start

with a cone and pare it down to the final figure in a sequence of steps.

Each step utilizes the following construction.

Figure 1
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2. A preliminary construction. In the sequel, [u, v] will denote the

closed segment joining two points u and v in E3.

At each step in §3 we will have an arc w of a circle, and a point c

not in the plane P of this circle. Then the process which follows will

be used at each step.

Let b and b(*) denote the endpoints of w; then e will denote the

midpoint of [b(*), b], and a will denote the midpoint of the arc w.

Let m be the subarc of w between a and b, and let m(*) be the subarc

between a and b(*). (See Figure 1.)

In the plane determined by a, e and c, construct a circle which is

tangent to [a, c] at c, which contains e in its interior, and which

meets [a, e] at a point d not equal to a or e. In the last paragraph of

this section, we will use the obvious fact that d may be chosen as

close to a as we please. The shorter arc which joins c to d on this circle

will be called p. (See Figure 2.)

Draw a circle in the plane P which is tangent to [a, b] at b, contains

e in its interior, and meets [a, e] at d. Let « be the shorter arc con-

necting b to d. (See Figure 3.)

Figures 2 and 3

For a point u on «, let t(u) be the intersection with [a, d] of the line

tangent to « at u. Note that each point on [a, d] is a t(u) for a unique

u on ». Also, note that there is a unique point p(u) on £ such that

[t(u), p(u)\ is tangent to p at £(«). (See Figure 4.)

In the interior of «, we now pick a disjoint sequence w(l), w(2), ■ ■ •

of nondegenerate closed arcs such that the union of the collection of

w(i) is dense in « and each w(i) is less than half the length of «. If
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b(i) and b(i, *) are the endpoints of w(i), let c(i) be the point of

intersection of the lines containing [t(b(i)), p(b(i))\ and [t(b(i, *)).

p(b(i, *))]. (See Figures 4 and 5.)

Figure 4

'(*('.*))
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CO)

f(é(i))

Figures 5 and 6

Let q be the curve from d to c which contains all points p(u) for n

not in any w(i) and contains all segments \p(b(i)), c(i)] and

[p(b(i, *)), c(i)]. Note that, for each u in n which is not an endpoint
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of any of the w(i), there is a unique line through t(u) which meets g

at a point q(u) in such a way that the line through t(u) and q(u) does

not cross g. For u=b(i) or b(i, *), define q(u) =c(i); then q(u) =p(u)

if u is not in any w(i), and q(u) =c(i) if u is in w(i).

{An alternate construction will be made by introducing only a

slight change at this point. Inside the region determined by the arc p,

by [p(b(l)), c(l)], and by [p(b(l, *)), c(l)] construct two arcs as in

Figure 6 which are on circles with half the curvature of p and which

are tangent to p at p(b(l)) and p(b(\,*)), respectively. Let x(l) be the

point where the arcs meet. Define gi to be p with the arc between

p(b(\)) and p(b(\, *)) replaced by the two arcs just described. Let

w'(i) be the points u in w(\) such that gi(«)=x(l), where gi(w) is

defined similarly to q(u).

Let $i, s2, • • • be a countable dense set on n. Let us choose a pos-

sibly different w(2), disjoint from w'(\) such that w(2) contains in

its interior the first of the s„ say sio, which is not in w'(l). We now

define g2 by repeating the above construction except that we pick

the arcs with such small curvature that s,0 is contained in w'(2), where

w'(2) is defined in a manner similar to w'(\).

Continuing inductively, we let the limit of the g¿'s be g, and we

have the union of the collection of w'(i) dense in ».}

For each m in « let H+(u) be the closed half space which contains e

and which is determined by the plane H(u) containing u, t(u) and

q(u).

Similarly, construct «(*) with endpoint at d. Then define t(u) for

«(*) as above, and let w(*, i) be the set of u such that t(u) =t(v) for

some v in w(i). (Note that we will need the figure in P enclosed by

«, «(*) and [&(*), b] to be convex. This can always be accomplished

by picking d close enough to a, which is possible as we have already

observed.)

3. The convex set Z. We will now use the preliminary construction

at each stage of an inductive process which will give us the desired

example. Let w be half of the unit circle in the Xix3-plane of Ez, say

Xi = 0 for all x in w. Let c = (0, 1, 0). We perform the construction of

§2 using w and c as indicated, which defines w(i), w(*, i) and c(i).

For the remaining steps we will use a standard convention in our

notation which we now describe.

At each stage we will have w(-, i), w(-, *, i) and c(-, i), where the

dot stands for a finite (or null) sequence of symbols each of which is

either a star or a positive integer. We will follow the preliminary con-

struction for each of the pairs w(-, i) and c(-, i), and w(-, *, i) and
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c(-, i). We will name the arcs and points according to their function.

That is, if an object performing a certain function was called y(j)

or y(*,j) in the preliminaries, it will now be designated y(-, i, j) or

y(', i, *<j) if we are working with w(-, i), and it will be y(-, *, i, j)

or y(-, *, i, *,j) if we are working with w(- ,*,i). Note that it is pos-

sible to tell the stage of the induction by counting the number of

integers in parentheses after a symbol.

For example, we have defined w(i), w(*, i), and c(i). For w(i), let

b(i) and b(i, *) be its endpoints, let e(i) be the midpoint of [b(i, *),

b(i)\, and so on. (Also, see Figure 7.)

/ \

m-—-a   -»»(*)

n-d-«(*)

w(i) ■- c{i) -w(*, i)

S       \ /      \

m{i) - a(i) -m(i, *) m(*, i) - a(*, i) -m(*, », *)

«(») -■ d(i)  -n(i, *) »(*, i) - d{*, i)  -»(*, », *)

w{i,j)-c(i, j)-w{i, *,j) w(i, *,j)-c(*, », j) -w{*, », *,/)

/   \ /     \ >^\ S     \

Figure 7

Having completed the induction, recall the definition in §2 of

H+(u) where u is in «. For m in «(•) or «(-,*), we define H+(u) in the

same way. That is, in the definition of H+(u) we replace « by «(•) or

«(•, *), g by q(-), a by a(-) and eby e(-). Let A be the cone generated

by w and c, and let Z be the intersection of A with each of the H+(u)

for u in some «(•)•

4. Properties of Z. First, it is clear that Z is compact and convex,

since it is the intersection with a compact convex set of a collection of

closed convex sets.

Property 1. Each point of q(-)r\p(-) is an exposed point except

points of the form p(b(-, i)) and p(b(-, i, *)). These latter are not ex-

posed, except in the alternate construction where each point of q(-) is

exposed. In any case, each c(-) is exposed.

Proof. It is useful to think of a sequence of convex sets A =A0, Ai,

A2, ■ ■ ■ , where Ai is the intersection with ^4,_i of the H+(u) which

are constructed at the t'th step. If H+(u) is constructed at the ith

step, the plane H(u) which determines H+(u) meets A(-i only in the

cone generated by the w and c which define H(u). Moreover, if u is
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not a¡)(0, then H(u) meets A,; in a segment L(u). Since each «(•) has

a corresponding «( •, *), there is a u' in «( •, *) such that P(m') meets

L(u) at a single point r. Every point in each q(-) is such a point, ex-

cept as noted. Moreover, each H+(v) contains L(u) and L(u'). There-

fore H(u) meets Z along L(u), H(u') meets Z along L(u'), and so r is

the only point common to H(u), H(u'), and Z.

Let / be a linear functional such that H(u) = {x : f(x) = 1} and /

is not greater than 1 on H+(u). Let g be a linear functional such that

H(u') = {x: g(x) = 1} and g is not greater than 1 on H+(u'). The above

argument shows that / assumes its Z-maximum at L(u) and g as-

sumes its Z-maximum at L(u'). Therefore, f/2-\-g/2 assumes its

maximum exactly at r.

Property 2. There are no exposed points other than those noted in

Property 1 and those in the XiXz-plane.

Proof. Let r be a point which is not in the XiX3-plane or in the

x2x3-plane. Each such point which is also on the boundary of Z is the

limit of a sequence of points each of which is on a segment of the form

L(u), where L(u) was defined in the proof of Property 1. Therefore

r is on a segment contained in the boundary of Z and reaching to the

xix3 plane. If r is an extreme point, then r must be an endpoint of this

segment. Let 5 be the other end.

If r is not on any L(u), then at each step r is contained in the cone

defined by some w(-, •) and the corresponding c(-). Let C, be the

cone which contains r at the ith step. Then [r, s] is the intersection

of the collection of C,.

Let a be the curve which starts at c, goes down q to the apex of &,

goes down G in the same way to the apex of C2, and so on. Then a

ends at r, and the part of a close to r is very nearly parallel to [r, s].

Therefore, r is not exposed.

The following demonstrates the theorem of the title.

Property 3. In the alternate construction, Ep is the union of a counta-

ble number of closed sets each of which has no interior with respect to Ep.

In the standard construction, Ep contains no dense G¡.

Proof. Each g(-) is compact, and therefore closed in Ep. Moreover,

g( •) obviously has no interior with respect to Ep since the union of the

set of g(-, i), i = \, 2, • • • , has g(-) in its closure. This proves the

first statement; the second statement follows similarly.

The following answers a question arising from [l ] where it is proved

that Ep of any convex set in En is the union of n sets each of which

is the intersection of an F, with a G¡. We show that one cannot validly

replace "intersection" by "union" in the above sentence.
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Property 4. In the standard construction, Ep is not the union of an

Fc with a G¡.

Proof. It is easily seen that Ep is the union of a countable number

of sets Fi, each of which is homeomorphic to a Cantor set with the

endpoints removed and with one point added from each of the ex-

cluded open intervals used to define the Cantor set. The points cor-

responding to the latter will be called the "added points" of Ft. Let

Gi denote Fi after the added points are removed. Since d is closed in

Ev, any Fa contained in Ep will intersect C7¿ in an F„. Since there are

only a countable number of added points, any G¡ contained in Ev will

meet the union T of the G¡ in a G¡. Therefore, if EP is the union of an

F„ with a G¡, then so is T.

Suppose that T is the union of F and G where the former is an F,

and the latter is a G¡. If F has a nonempty interior with respect to T,

then Ff~\Gi has a nonempty interior with respect to Gi, for some i. This

is impossible. Therefore, G is a dense G¡ in T. However, T is dense in

Ep, and we have contradicted the last statement in Property 3. This

completes the proof.
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