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We recall Minkowski's famous theorem : If an open convex domain,

symmetric about a lattice-point of a unit lattice contains no lattice

point other than its center then its area is ^ 4.

We must pay tribute to Minkowski for recognizing the significance

of such a simple theorem in number theory. For the theorem becomes

almost trivial by reformulating it as follows: If a lattice of open

centro-symmetric convex domains has the property that none of the

domains contains the center of another one then the density of the

lattice is g 4. To see this we reduce each domain about its center by a

similarity in the ratio 1:2, obtaining a new lattice of disjoint domains.

The density of this lattice is, on the one hand, ^ 1, on the other hand,

one quarter of the density of the original lattice.

In what follows we will call a centro-symmetric convex domain a

disc. We shall say that a set of discs form a Minkowskian distribution

(or arrangement) if none of the discs contains in its interior the center

of another one. First we will make some remarks concerning Minkow-

skian distributions of general discs. Then we will prove that the dens-

est Minkowskian circle-arrangement consists of equal circles.

Minkowski's theorem immediately implies the following

Remark 1. If in a Minkowskian distribution of discs the centers

constitute a lattice, then the density of the distribution is ^4.

The above proof of Minkowski's theorem yields

Remark 2. The density of a Minkowskian arrangement of homo-

thetic (similar and similarly situated) discs is ^4.

Remark 3. There is no uniform upper bound for the density of

Minkowskian distributions of discs.

The following proof, which is a modification of my original one, is

due to M. N. Bleicher.

Let k be an arbitrary positive integer. We claim that a square can

be covered ¿-times by rectangles lying in the square and forming a

Minkowskian arrangement. The proof goes by induction. For k = 1

the statement being obvious, we suppose its validity for k. To dis-

tinguish the rectangles occurring in the inductive supposition from

those added in the next step, we will call them oblongs and strips,

respectively. We decompose the square Q into four partial squares

and construct to each of them a k-io\d Minkowskian covering by ob-
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longs lying in the respective partial square. Then we can decompose

Q into parallel strips in such a way that none of them contains in its

interior the center of an oblong. Since, on the other hand, the center

of each strip is a common boundary point of two partial squares, it

cannot be contained in the interior of an oblong. Thus the oblongs

and the strips together constitute a (¿ + l)-fold Minkowskian cover-

ing of Q.
Is there a uniform upper bound for the densities of all Minkowskian

distributions of congruent discs? This problem is not solved as yet.

The following remarks show that, if there is a Minkowskian distribu-

tion of congruent discs having a great density (say 103), then the

discs must be very thin, they must occur in many different orienta-

tions and the centers must be arranged very irregularly, in a certain

sense.

Remark 4. If in a Minkowskian distribution of congruent discs, A

is the area of a disc and a is the area of its incircle then the density

of the distribution is ^AA/a.

This is obvious by applying Remark 2 to the incircles of the discs

which also form a Minkowskian distribution.

Remark 5. If in a Minkowskian distribution of congruent discs the

discs have at most n different orientations then the density of the

distribution is =4».

Remark 6. If in a Minkowskian distribution of congruent discs the

set of centers is the union of n lattices then the distribution has a

density ¿4«.

Remarks 5 and 6 are immediate consequences of Remark 2 and 1,

respectively.

Now we turn our attention to Minkowskian circle-arrangements.

According to Remark 2 the density of such an arrangement is = 4. We

will show that this bound can be replaced by 2ir/y/2> = 3.627 • • • .

This is the density of a set of congruent circles each containing besides

its own center exactly six other centers equally spaced on its bound-

ary (Figure 1). We restrict ourselves to circles whose radii fi, r2, • • •

have a positive lower and a finite upper bound : r = inf r¿ > 0, R = sup r,

< oo. Introducing the homogeneity r/R of the circles, this condition

can be expressed by saying that the homogeneity of the circles is

positive. As the main result of this paper we now can formulate the

following

Theorem 1. The density of a Minkowskian circle-distribution with

positive homogeneity is always ^2tt/\/3.

Let the circles C\, c2, • • •   with centers Oi, 02, • • •   and radii
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Figure 1

fi, r-¡, ■ • ■ form a Minkowskian arrangement with positive homo-

geneity. We may suppose that the plane is completely covered by the

interiors of the circles. Otherwise we could successively add to the

circles new ones of radius r = inf r¿ so as to obtain a new Minkowskian

circle-arrangement with density no smaller and the same homogeneity

as the original one and having the desired property.

Consider the set S{ of all points P whose (algebraic) distance from

Ci, defined by d(P, c,) =POi — ri, is less than or equal to their distance

from any other circle ck^Ci:

d(P, a) á d(P, ck),       k j¿ i.

(Si, being bounded by arcs of hyperbola focused at Oit is a star region

with respect to Oi.)

Obviously, the sets Si, St, ■ ■ ■ form a tessellation T. Let F be a

vertex of this tessellation and Si, ■ ■ ■ , Sk the faces around V. We

claim that Oi, • • • , Ok are the vertices of a convex polygon P which,

besides its vertices, does not contain any other center 0¿. To see

this we observe that, in view of d(V, Ci) = • • • =d(V, ck) — —p<0,

the circle with radius p and center V touches the circles Ci, ■ ■ • , ck

from inside. Therefore, if Oßi is any side of the convex hull H of the

points Oi, • •    , Ok, the triangle VOfii is completely covered by the
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interiors of the circles centered at its vertices. Thus H cannot contain

any center different from its vertices, showing that P = H.

This property of T enables us to construct the dual tessellation T',

whose faces are the polygons P belonging to the vertices of T. If a

face of 7" has more than three sides, we decompose it by noninter-

secting diagonals into triangles obtaining a tessellation with triangu-

lar faces whose vertices are the centers 0\, 02, • • • .

Let Oi, Oj, Ok be a face of this tessellation, Aijk its area and a,, a,-, ak

the angles at 0„ 0¡, 0*. We state that the density

I I 2
air i + cíjrj + akrk

d =-
2A,yi

of the circles with respect to the triangle OiOjOk satisfies the inequal-

ity

d Ú 2tt/\/3.

We consider three circles with variable centers A, B, C and variable

radii Ta, rs, re satisfying the same conditions as the circles c{, c¡, ck.

Let us recapitulate these conditions.

1. The center-condition, involved in the definition of a Minkowskian

circle-arrangement, can be expressed in terms of the sides a, b, c of

the triangle ABC. Supposing a^b^c, we have rAèb, rBu(í, rcúa.

2. The intersection-condition, which follows from the construction

of the above triangulation, says that the intersection of the three cir-

cles must contain a circle touching each of the three circles. This con-

dition implies that the circle with center C cannot completely contain

the intersection of the circles with radii a and b centered at B and A,

respectively.

We shall show that under these conditions

2 2 2
oír a + ßrß + yrc      2w

ab sin y \/3

where a, ß, y are the angles oí ABC. First we consider the

Case a+j3^ir/3. Here we use the center-condition only, in view of

which

2 2 2 2 2 2
arA + ßrß + yrc     ab + ßa  + ya a

ab sin y ab sin y sin y

(ir — a) sin2 a + a sin2 ß

sin a sin ß sin (a + ß)

b       ir — a   a
— +-.-

a        sin y    b

= /(«,/»)■
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We claim that for 0<a^ß<ir/2

(a + ß   a + ß\              t
f(a,ß) £f(—LlL,-1) =-
A -J\    2 2    /      sin(a + /3)

This inequality is equivalent with

h(ß) = (ir — a) sin2 a + a sin2 /3 — tt sin a sin /3 ^ 0,

which is true, since h(a) =0 and

h'(ß)/cos ß = 2a sin 0 — x sin a < 2a — tt sin a < 0.

The stipulation a=&ge implies afißfsLy = ir — a— ß. Thus ir/3

^a+j8^27r/3, in consequence of which

7T 2tt
f(a, ß) S: -á-
J sin(a + ß)      V3

Case a+ß<ir/3. We reflect the triangle ABC in the line AB, ob-

taining the triangle ABC. As a consequence of the intersection-condi-

tion we have now rc<CC — c. Let Ca, Cb, cc, cq< be the circles with

radii b, a, c, c centered a.tA,B, C, C, respectively. We must estimate

the density of these four circles with respect to the quadrangle

ACBC (which equals the density of ca, Cb, cc with respect to ABC).

But the results obtained in the case a+ß^Tr/3 show that both the

density of Ca, Cc, Cc with respect to ^4CC and the density of Cb, Cc,

cC' with respect to BCC are ^2iv/\,3. It follows that so is the den-

sity of the four circles with respect to the quadrangle.

This completes the proof of the inequality d^2ir/y/3.

Let 0 be a fixed point of the plane and C(P) a circle of radius P

centered at 0. Again let 53p denote a summation extending either

over those circles c¿ or over those triangles OiO¡Ok of the tessellation

constructed above which are completely contained in C(P). Since the

circles Ci, c¡, ck have inner points in common, OiOyOj+ry^r.+P and

OiOk<ri+rk^ri+R. Hence, if c, is contained in C(P), then OiOjOk

is contained in C(P+P). Thus

t—v        2 1     »—i 2 2 2 2tT    __ 27T
53 rti < — 53 <Vi + W + ouft) á — Z A,y* < —- (P + Ry
p 2 p+B V3 p+B v 3

showing that the (upper) density

d = lim sup-^ irr,-
p->»   7rP2  p

of the circles satisfies the inequality d^2ir/'\/3.
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We finish with an outline of the proof of the following

Theorem 2. If a finite set of circles form a Minkowskian arrangement

then the density of the circles in their union cannot exceed 2w/\/3.

We add to the circles infinitely many congruent circles of radius e

so as to obtain a Minkowskian arrangement of circles covering the

plane completely. We construct the triangulation used in the proof

of Theorem 1 and add the inequalities

1 2 2 2 27T

— (airi + a¡rj + akrk) = —- Aijk
2 V3

for all triangles at least one vertex of which coincides with the center

of one of the original circles. Letting e—»0, we obtain

2w
T <-U,- V3

where T is the total area of the circles and U is the area of their union.

Although in this inequality the constant 2w/ -\/3 cannot be replaced

by a smaller one, equality can never hold. In a subsequent paper we

intend to discuss a sharpening of the inequality T/U<2w/-\/3 in

which equality can be attained in various cases.

University of Wisconsin


