A CHARACTERIZATION OF THE ALMOST PERIODIC
HOMEOMORPHISMS ON THE CLOSED 2-CELL

N. E. FOLAND

1. Introduction. The objective of this paper is to prove that any
almost periodic homeomorphism of a closed 2-cell onto itself is topo-
logically equivalent to a reflection of a disk in a diameter or to a
rotation of a disk about its center. This extends the well-known re-
sults of Kerékjarté [5] for periodic homeomorphisms (cf. Eilenberg
[1, Theorem 2]).

2. A topological classification of the almost periodic homeomor-
phisms on a closed 2-cell. A homeomorphism % of a metric space
(X, p) onto itself is said to be almost periodic on X if ¢>0 implies
that there exists a relatively dense sequence {n,} of integers such
that p(x, k*i(x)) <eforallx&€X and ¢=+1, £+2, - - - . A homeomor-
phism £ of the space X onto itself is said to be topologically equivalent
to a homeomorphism f of the space Y onto itself if there exists a
homeomorphism 8 of X onto Y such that A=8"f8. If 2 and f are
topologically equivalent, it is clear that . is almost periodic on X
if and only if f is almost periodic on Y. By a closed 2-cell we mean
any homeomorphic image of the unit disk. With these definitions it
suffices to consider almost periodic homeomorphisms on the unit
disk D. Denote the metric in D by d(-, -).

Kerékjarté’s result [5, p. 224] for periodic homeomorphisms may
be stated as follows:

LEMMA 1. Let f be a periodic homeomorphism of D onto D. If f is
orientation reversing, then f is topologically equivalent to a reflection of
D in a diameter. If f is orientation preserving, then f is topologically
equivalent to a rotation of D about its center.

Since any regularly almost periodic homeomorphism of D onto D
is necessarily periodic [2] we have,

LEMMA 2 [4, p. 55). Let h be an almost periodic homeomor phism of
D onto D and let € be any positive number. Then there exists a periodic
homeomorphism H of D onto D such that d(h(x), H(x)) <e for each
x&ED, where H may be chosen as the uniform limit of a sequence of
positive powers of h.

A well-known characterization of the almost periodicity of % is the
following:
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LemMA 3 [3, p. 341]. The following are pairwise equivalent: (1) h is
almost periodic on D; (2) the set of powers of h is equicontinuous; (3) the
set of powers of h has compact closure in the group of all homeomorphisms
of D onto D with the usual topology; (4) there exists a compatible metric
of D which makes h an isometry.

From (4) we see that if % is almost periodic on D, then in the metric
under which % is an isometry the orbit closure of each point of D lies
on a metric circle about any fixed point of D. We will show in the
nonperiodic case that each nondegenerate orbit closure is a simple
closed curve and that these lie around a unique fixed point of D like
concentric circles.

Let C denote the boundary of D. Then C is a unit circle.

LeMMA 4. If k is an almost periodic homeomorphism of D onto D such
that h| C 1s the identity, then h is the identity on D.

PRrOOF. Let €>0 be arbitrary. By Lemma 2 there exists a periodic
homeomorphism H on D such that d(k(x), H(x)) <e for all x&€D
where H is the uniform limit of a sequence of positive powers of k.
Since k| C is the identity, it follows that H| C is the identity. Then H
is periodic and orientation preserving, and hence is topologically
equivalent to a rotation 7 of D. Thus there exists a homeomorphism
B of D onto D such that H=8-'78. Then r=8HB~!| C is the identity
from which it follows that 7, and hence H, is the identity on D. Since
€>0 was arbitrary it follows that % is the identity on D.

Any homeomorphism of D onto D is either orientation preserving
or orientation reversing.

THEOREM 1. If h is an almost periodic orientation reversing homeo-
morphism of D onto D, then h is periodic of period two and hence is
topologically equivalent to a reflection of D in a diameter.

Proor. Using Lemma 1, it suffices to prove that % is periodic of
period two. Since hI C is orientation reversing and almost periodic,
the periodic homeomorphism H of Lemma 2 is such that H | Cis
periodic and orientation reversing. Hence H I C is periodic of period
two from which it follows that /| C is periodic of period two. Thus
h?| C is the identity and we conclude from Lemma 4 that k? is the
identity on D. Hence & is periodic of period two.

THEOREM 2. Let h be an'almost periodic orientation preserving homeo-
morphism of D onto D. Then h is topologically equivalent to a rotation of
D through an angle vw, where v (0=7=<1) is uniquely determined and
is rational if and only if h is periodic.
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ProoF. If h is periodic the result is known [5] (cf. Eilenberg
[1, Theorem 2]). Thus suppose % is nonperiodic. Let G be the closure
of the set of integral powers of % in the group of allhomeomorphisms of
D onto D. Then by Lemma 3, G is a compact topological group of
homeomorphisms of D onto D and each g&G is almost periodic on D.

The boundary C of D is a minimal set under G. Let x& C and de-
fine a: G—C as follows: For each g&G, a(g) =g(x). Then a is a con-
tinuous mapping of the topological space of G onto the circle C. It
follows that « is a homeomorphism if it is one-to-one. Thus let gy, g,
&G such that gi(x) =g(x). Then g=g7'giE€G is such that g(x) =x.
Since g is almost periodic on D, it is almost periodic on C. Since «x is
fixed under g and g is orientation preserving it follows that g| Cis the
identity. Thus by Lemma 4, g is the identity on D and g, =g,. Hence
« is a homeomorphism.

Thus G is a compact, connected topological group of homeomor-
phisms of D onto D. (It follows that the character group G* of G is an
infinite cyclic group and hence that G is isomorphic to the circle
group.) Since D contains a one-dimensional orbit, namely C, under
G, all orbits in D with one exception are one-dimensional [6, p. 252].
The exceptional orbit is a fixed point z under G and there is a closed
arc A from z to C such that A4 is a cross-section of all orbits in D.
Each nondegenerate orbit is then a homogeneous, compact, and con-
nected minimal set of dimension one. Thus each such orbit is a simple
closed curve, and the family of all nondegenerate orbits lie about 2z
like concentric circles.

The homeomorphism %| C is characterized by an irrational number
7 between 0 and 1, the Poincaré rotation number, and hl C is topo-
logically equivalent to a rotation 7 of C through an angle 77 [3,
p. 343]. Thus there exists a homeomorphism 8, of C onto C such that
k| C=B578,. Now let ¢ be the endpoint of 4 that lies in C. Define
B: D—D as follows: B(4) is a homeomorphism of A onto the radius
of D to Bo(c) such that B(z) is the center of D. For each gEG, B(g(4))
is a homeomorphism of the arc g(4) onto the radius of D to B,(g(c))
such that for each x& 4, B(x) and B(g(x)) lie on the same circle of D
concentric with C.

In order to show that 8 is well-defined we show that as g varies over
G the arcs g(4) cover D and if g1, g€ G such that gy #g,, then g.(4)
and g,(4) have only the point z in common. It is clear that D is
covered by the arcs g(4). Thus let x€ D —(2) such that gi(x) =g.(x).
Then g=g5'g:EG is such that 4 and g(4) each go through the point
%. The orbit of x under G is a simple closed curve C'. g is almost peri-
odic and orientation preserving on C’ and x& (' is fixed under g. Thus
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g[ C’ is the identity. The fact that g is the identity on D now follows
by an argument similar to that used in proving Lemma 4. Thus 8 is
well-defined.

Since the map a(g) =g(¢) is a homeomorphism of G onto C, 8 maps
the cross-sections g(A4), generated by A, onto the radii of D. Since
B(x) and B(g(x)) lie on the same circle of D concentric with C, 8 maps
the orbits under G (the orbit closures under %) onto the circles of D
concentric with C. Each x&D —(z) is on but one image g(4) of 4,
gEG, and one of the simple closed curves formed by the orbits. Thus
the map § is one-to-one and onto. In order to show that § is continu-
ous and hence a homeomorphism, it suffices to show that 8 is continu-
ous at each point of 4.

Let x& A4, x#2z, and let x;& D such that lim;., x;=x. Let x/ be the
point of the orbit of x; under G thatis on 4 and let g;&G be such that
gi(x!)=x. Now B(x;) is the intersection of the radius of D to By(gi(c))
and the circle of D concentric with C passing through B(x/). Since
the orbit decomposition of D under G is continuous and lim;., x;=x,
lim;., x! = x, which implies that lim;.,, 8(x!) =8(x).

Thus the concentric circles containing 8(x;) converge to the circle
containing 8(x). Now lim;., g:(x; ) =« and lim;., x/ = x imply that
lim;., g:istheidentityin G. Thuslim,., g.(¢c) =cimplieslim;., Bo(g:(c))
=(c). Hence the radii of D containing B8(x;) converge to the radius of
D containing 3(x). Thus 8 is continuous at x. [t is easy to see that 8 is
continuous at z. Hence f is a homeomorphism of D onto D. Finally
B| C =B and k| C=B5'rB, where  is a rotation of C through an angle
7m. Then the definition of 8 implies that k=8"'Rf where R is the
extension of 7 to a rotation of D through an angle 7w. This completes
the proof of the theorem.
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