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Let Z = UoRVo in which R = diag (ry ■ ■ ■ , rn), fi>0, i = l, ■ ■ ■ , n,

and Z/o and F0 are «-square unitary matrices. In [4] S. H. Tung ex-

tends Harnack's inequality by a Lagrange multiplier argument to

obtain

Theorem 1. If U is any n-square unitary matrix and l>rk^0,

k = l, • • ■ , n, then

d) n~<_det(/-zz*]_*n —•
¿Ti  1 + n      det (/ - ZU*) det (/ - UZ*)      ¿¿  1 - rk

The numerator of the middle fraction in (1) is just YÏÂ-i 1— r1 and

hence upon clearing of fractions (1) is directly equivalent to

(2) ft 1 + '* = I det (/ - A) | £ n 1 - U
4-1 k-l

where A=RWandW= V0U*U0.

What we show here is that some standard techniques [see 3, p. 112]

applied to the singular value—eigenvalue inequalities of H. Weyl [5]

will produce the following generalization of (2). (Recall that the

singular values of A are the non-negative square roots of the eigen-

values of A*A e.g., the singular values of A =RW are the numbers

fit • • • i O

Theorem 2. Suppose that A has eigenvalues Xi, • • • ,X„, |Xi| ^ • • •

è | X„ |, and singular values n ^ • • • ^rn. If 1\ < 1 and 1 ̂  ci ^ • • •

^cp>0 then if lúp^n,

n i + ckrk ̂ n i + ft i x* i ^ n 11 - <*** i

(3)

ê n 11 - <*x* i è n i
1=1 fc=l

Proof. Since

(4) | Xi|   úri<l,

ckrk.
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the two middle inequalities in (3) are trivial. Weyl's inequalities are

(5) ft 1**1  ^flrk
*=1 k=l

with equality for p = ra. Actually (5) follows right away by applying

(4) to the Pth Grassmann compound matrix of A (this was Weyl's

proof).

Next observe that the function log(l+c*e*) is convex increasing

for all real x and hence the function

(6) /(/) = fih, ■-, Q - E log(l + cke'k)
k=i

is convex in Euclidean «-space. By taking logs in (5) and applying a

familiar result in Hardy-Littlewood-Pólya [2, p. 49] it follows that

(7) log | X |   = S logr

where log j X | = (log | Xi |, • ■ • , log | X„ | ), logr = (logri, • • • , logr„)

and 5 is an ra-square doubly stochastic (d.s.) matrix. If we set

(8) giS) = fiS logr)

it is then easy to verify that g is convex on the polyhedron of d.s.

matrices and thereby assumes its maximum on a vertex of this poly-

hedron. According to Birkhoff's result [l] these vertices are permu-

tation matrices and by using the increasing properties of/we compute

E log(l + ck | \k | ) = E log(l + ck exp[log | X, | ]) = /(log | X | )
k-i k-i

= fiS logr) g /(logri, • • • , logr*)

(9) p
- E log(l + ck exp[logr*])

*-i

= E los(i + c*r*)-
*-i

We can then get the upper inequality in (3) by taking the exponential

of the two ends of (9).

The lower inequality in (3) is done in about the same way. This

time observe that the function log(l — ckex) is concave decreasing for

all x<0. Hence

(10) fih, ••',<»)=£ log(l - cketk)
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is concave for /*<0, A = 1, • • • , ra. Define g(5) by (8), using (10) in-

stead of (6) for the definition of/. Now g(5) is minimal for S a per-

mutation matrix. Thus for some selection 1^î'i< • • • <ip^n we

have

p p
E log(l - ck | X* I ) = E log(! - c* exp[log | X* | ])
*=i *=i

= /(log | X | )

(11) =/(51ogr)

= /Oogrj,, • • • , logr,p)

p
= Elog(l - c*exp[logrJ).

*=i

Every r, is less than 1 so that

p p
El°g(l - c*exp[logrJ) ^ E log(! ~ c* exp[log r*J)
*=i *=i

(12)
7>

=   El°g(l   — Wk)-
*=1

Combining (11) and (12) and taking exponentials produces the lower

equality in (3).

Of course, if we set p = w and Ci— ■ ■ ■ =c„ = l then (3) becomes

(2).
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