- 5. ——, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.
- 6. —, Rings with zero right and left singular ideals, Trans. Amer. Math. Soc. 118 (1965), 150-157.
  - 7. ——, Potent rings, Trans. Amer. Math. Soc. 119(1965), 524-534.
- 8. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.

University of Rochester

## POWERS IN EIGHTH-GROUPS

## SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = \operatorname{gp}(a_1, \dots, a_n; R_1(a_{\lambda}) = 1, \dots, R_m(a_{\lambda}) = 1),$$

where (i) each defining relator is cyclically reduced and (ii) if  $B_i$  and  $B_j$  are cyclic transforms of  $R_i$  and  $R_j$ , then less than one-eighth of the length of the shorter one cancels in the product  $B_i^{\pm 1}B_j^{\pm 1}$ , unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group  $F(p; n_1, \dots, n_d; m)$ , see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \dots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

REMARK. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word  $V^*$  conjugate to V by writing the word V in a circle and then reducing. Such a word  $V^*$  will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.

LEMMA. Let W be cyclically fully reduced, let W be conjugate to V, and let l(V) = n. Then  $l(W) \le r^2 + rn$ .

PROOF OF LEMMA. By Greendlinger's Basic Theorem in [2, p. 643], there exist reduced cyclic transforms  $W^*$  and  $V^*$  of W and V such that  $W^* = T^{-1}V^*T$ , where l(T) < r/8 and  $l(V^*) \le l(V)$ . Hence

$$l(T^{-1}V^*T) < r/8 + n + r/8 < r + n.$$

Consequently, by Lemma 3 in [3],

$$l(W^*) \leq rl(T^{-1}V^*T) \leq r^2 + rn.$$

But W cyclically fully reduced implies  $l(W) = l(W^*)$ . Hence the lemma is true.

Suppose, now, that an arbitrary word  $W \neq 1$  in an eighth-group is a power, say  $W = V^m$  and l(W) = n. Let A be a reduced cyclic transform of V; then W is conjugate to  $A^m$ . Lemma 4 in [3] implies that  $A^m = B$ , where B is cyclically fully reduced and where (i)  $l(B) \geq m$ , and (ii)  $l(B) \geq l(A) - r$ . Accordingly, our lemma above implies

$$(1) m \leq l(B) < r^2 + nr,$$

(2) 
$$l(A) \leq l(B) + r < r^2 + nr + r$$
.

The above discussion proves the following

THEOREM. Let  $W \neq 1$  be an arbitrary word in an eighth-group G where l(W) = n and r is the length of the largest defining relator in G. Then W is a power if and only if W is conjugate to  $A^m$  where m and A satisfy (1) and (2).

Since the conjugacy problem has been solved for eighth-groups by Greendlinger in [2], and since there exist only a finite number of words in any given length, the above theorem gives us our algorithm.

## BIBLIOGRAPHY

- 1. L. Greenberg, Discrete groups of motions, Canad. J. Math. 12 (1960), 415-426.
- 2. M. Greendlinger, On Dehn's algorithm for the conjugacy and word problems, with applications, Comm. Pure Appl. Math. 13 (1960), 641-677.
- 3. S. Lipschutz, An extension of Greendlinger's results on the word problem, Proc. Amer. Math. Soc. 15 (1964), 37-43.
- 4. B. Reinhart, Algorithms for Jordan curves on compact surfaces, Ann. of Math. (2) 75 (1962), 209-222.

POLYTECHNIC INSTITUTE OF BROOKLYN