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0. Introduction. Throughout this paper T will denote a measure

preserving transformation on a cr-finite infinite measure space

(X, (B, m) which is point isomorphic with the Lebesgue measure space

of the real line. Unless otherwise stated, T will be one-one. Equations

involving functions or sets will always be interpreted modulo sets of

measure zero.

T is said to be ergodic if T~1E = E, ££(B, implies either mE = 0 or

m (X-E)=0.

P. R. Halmos [l ] has posed the problem of characterising spectrally

the property of ergodicity for cr-finite infinite measure preserving

transformations. Our purpose is to show that the ergodicity of such a

transformation is not a spectral property. Let Ut denote the induced

unitary operator of L2(X,(S>,m) onto itself defined by

UT:f(x)-+f(Tx)

lor f(x)EL2(X, (B, m). We produce two infinite measure preserving

transformations S, T one of which is ergodic and the other not

ergodic, such that

VUsV-1 = Ut

for some unitary operator V of L2(X, (B, m) onto itself.

Our examples are produced after an analysis of infinite measure

preserving transformations which satisfy conditions analogous to

Kolmogorov's zero-one law. Extending the current terminology [2],

we call these transformations infinite X-automorphisms. Unlike the

finite i£-automorphisms, infinite 7í-automorphisms are not necessarily

ergodic, for they may possess wandering sets of positive measure.

However, if no wandering sets of positive measure exist, in fact if the

conservative part of the transformations is not null, then an infinite

AT-automorphism is ergodic. In any case all infinite i£-automorphisms

have denumerable Lebesgue spectrum, and a completely dissipative

transformation has denumerable Lebesgue spectrum. (There is no

need to speak of the orthogonal complement of the constant func-

tions when the measure space is infinite since nonzero constant func-
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tions are not square integrable.) To prove our main result it suffices

to produce an ergodic infinite iT-automorphism and a completely

dissipative transformation. Both transformations have denumerable

Lebesgue spectrum and are therefore unitarily equivalent. Con-

cretely, the nonergodic transformation 5 of the real line defined by

5: x—* x + 1

and the ergodic shift transformation T associated with the random

walk on the integers (with equal probabilities of 1/3 moving one step

to the left, remaining where it is, or moving one step to the right) are

unitarily equivalent.

1. Definitions. Two unitary operators <7i, U2 of L2iX, (B, m) onto

itself are said to be unitarily equivalent if there exists a unitary oper-

ator V of L2iX, <B, m) onto itself such that

Fi/iF-1 = <72.

A unitary operator U of L2iX, (B, m) is said to have denumerable

Lebesgue spectrum if there exists an orthonormal basis {/,-,/} (¿ = 0, 1,

2, • • • ; j = 0, ±1, ±2,   • • • ) of LiiX, (B, m) such that

U-fi.j —*fij+v

A set BE® is said to be a wandering set of positive measure if

miB) > 0 and FvBH T'B = 0 Hi ¿¿j.
By a theorem of Hopf [3], A" decomposes into two disjoint F in-

variant sets C, DE(& where CWZ> = X, such that no (B subset of C is a

wandering set of positive measure and there exists BE®, BED,

satisfying 11,1 _«, TiB=D and TiBC\T'B = 0 if *V;\
The sets C, D also have the following property:

For every integrable / with /(x) > 0 :

00 CO

(1-1)    E/(Fs'x) = °o  if x E C   and    E/(F*'x) < °o  if x E D.
•=o «=o

The sets C, D (which are essentially unique) are called the conservative

and dissipative parts of X respectively. If C is null T is called com-

pletely dissipative and if D is null T is called completely conservative.

Let ß be a <r-finite sub-cr-algebra of (B ; then there is a partition

f = f(ß) of X into sets iÇ-fibres) such that the class of (B sets which

are composed of whole f-fibres coincides with ß. If F_1ßCö then

F_1f i£f (i.e., every f-fibre is a union of Ff-fibres) [4], [5]. Let Xt

be the space whose points are f-fibres. If TEEF where E, FEÇ de-
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fine TtC=D, as a point map of X(. (Obviously if x, y belong to the

same f-fibre then Tx, Tv belong to the same f-fibre.) Let (Bf be the

cr-algebra of subsets of Xt defined by a, and let mt be the measure on

(Bf induced by m ; then Tt is a (possibly many-one) measure preserving

transformation of (Xt, 03¡-, mt) onto itself. In fact (Xt, (&{, mt, Tt) is

the homomorphic image, under a map <¡>t, of (X, 03, m, T) where

<pt: x—>C if xEC.
Let ft be a cr-finite sub-cr-algebra of (B and let r-1ffiCft and let

00/ 00 \

(1.2) V T'a = 03 ( i.e., the o--algebra generated by U T'a is (B J,
i'=0 \ i=0 /

00 / CO V

(1.3) /\ T^a = 31 (i.e., f\ T~{a is the trivial sub-cr-algebra of (B ),
i-=0 \ 1=0 /

then T is called an infinite K-automorphism.

If (1.3) is satisfied with a = 03 then T is called an infinite exact

endomorphism and is necessarily ergodic.

If f = f(a) and T is an infinite AT-automorphism (with respect to

a) then Tt is an infinite exact endomorphism of (Xt, o3j, mt). These

terms extend the existing terminology for transformations of a finite

measure space [2].

Let T be a one-one (or many-one) measure preserving transforma-

tion of (X, 03, m) onto itself and let B E 03 be a set of positive measure

such that almost all points of B return infinitely often to B under

both positive and negative iterations of T, then the induced trans-

formation Tb defined by

TBx = Tnx if x, Tnx E B    and    T'x $ B, 0 < i < n

is defined for almost all points of B, and is a measure preserving

transformation of B — N onto itself for some null set N. Suppose fur-

ther that the smallest invariant set which contains B is essentially

the whole space X, then T is ergodic on X if and only if Tb is ergodic

on B-N [6].
If r_1aCft where a is cr-finite and if T is conservative, then Ta

is well defined oniGß (where 0<m(A) < <=o), (Tt)At is well defined

on

At = <t>t(A) E ar,    and
(1.4)

(Tt)At = (TA)tr\A

where ÇC}A = {Ef~\A: EEC} is the partition of A induced by

f = T(a). Moreover, if Vfl"_0 Tnd = (& then
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TA\ar\ A)Etir\A= {ED A:EEG] and

00

V ri(an ii) = an a.
n=0

2. Ergodic analysis.

Theorem 1. Suppose r-'ßC« a«d V(10 F"ft = (B wAere fí ¿5 <r-

finite and suppose A Eel where 0 <miA) < 00 om¿ Ta is well defined on

A. Suppose further that the smallest invariant set containing A is the

whole space X, then the following statements are mutually equivalent:

(i)  T is ergodic on X.

(ii)  Tt is ergodic on Xs.

(iii)  Ta is ergodic on A.

(iv) iTA)tc\A = (Ff),!, is ergodic on A{.

Proof. The implications (i)=s-(ii)<=>(iv), (i)<=>(iii)=>(iv) present no

difficulties and (ii)=*(i) follows from these implications and (iv)=>(iii).

We show that (iv)=*(iii). Suppose iTA)¡nA is ergodic and TAlE = E

where EEA and EE<&. Choose e>0 and FET\ianA) iFEA) such
that miFAE)<e then m(Fi"FA£)<€ where Tj'FEanA.

Consequently E can be approximated arbitrarily closely by sets in

Q,nA and therefore EE®nA. Hence Et is a iTA)¡r\A invariant set

and ?Wf(£f) = OTf(^f) or raf(.E{-)=0 i.e. miE)=miA) or w(£)=0.

Corollary. If T is an infinite K-automorphism iwith respect to a)

then either T is completely dissipative or T is ergodic.

Proof. Let D be the dissipative part of X. Let fix) be a strictly

positive integrable function which is Q, measurable. Then D

= {x: E¡^o/(F*x) < 00 } E&. Therefore D is either null or essentially

the whole space X. If D is null then T is completely conservative. In

view of the theorem we need only show that there exists a set A E Ö

with 0<miA) < 00 such that the smallest invariant set containing

A is essentially the whole space. Let E = U ™=0 T~nA E ft then T-1E EE

and since F is conservative E is essentially invariant. Therefore E is

essentially the whole space X.

3. Spectral analysis.

Theorem 2. If T is completely dissipative then Ur has denumerable

Lebesgue spectrum.

Proof. Let IC_M TnB = X where BE® and T{BnT^B = 0 if
i?£j. Let {/„} be an orthonormal basis of L2(S, 5P\(B, m) and define
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gn(x)  = fn(x)     if X E B,

= 0 iîxEB,

then Ufgn(x) vanishes outside T~mB. Consequently {/„,m} = { U™gn}

is an orthonormal basis of L2(X, 03, m) and c7r/„,m= c7^+1/n=/„,m+i.

The proofs in the remainder of this section are similar to the proofs

of their 'finite' analogues, [7], [8].

Lemma 1. If T_1aCa where a is a-finite and T is ergodic then a is

nonatomic.

Proof. Suppose A Ea is an atom of a (i.e., if BE& then either

BZ)A or B(~\A = 0) then 0<m(A) < <» since a is cr-finite. Moreover,

TnA is an atom of Tna and since AE&ETna(n>0), either A = TnA

or A C\ TnA =0.11 A = TnA lor some integer n > 0 then X = A U TA

\J • • • \JTn~lA since the latter set isT invariant. However, this would

imply m(X) < °o. Consequently AC\TnA =0 for all w>0 and there-

fore A is a wandering set of positive measure contradicting the

ergodicity of T. (The cr-algebra 03 is nonatomic.)

Lemma 2. If T_1aca and T^tX^tX where 0, is a-finite and T is

ergodic, then the orthogonal complement ofL2(X, T~ld, m) in L2(X, a, m)

has infinite (denumerable) dimension.

Proof. Let H®UTL = £ where £ = L2(X, a, m) and UtL

= L2(X, r_1a, m). Since T^a^a we know that 7£is nontrivial. Let

0 ̂ fEH and let

F = {x:f(x) 7^ 0}

so that FE a and m(F) >0.
Letxy£= {xFg:gEL} and xfUtL= {xFg:gEUTL}, then since F

contains no atoms of a, xfL has infinite dimension.

Define HiEH by

Hi © xfUtL = XfL.

If XfUtL has finite dimension then i7i has infinite dimension. Sup-

pose xfUtL has infinite dimension and choose an independent basis

{xpfn} ExfUtL(JuEUtL) such that the functions/« are bounded

then {//„} is an independent set and each function//, is a measura-

ble, square integrable and vanishes outside F. Moreover, for each

gEUTL

f ffÄXFg]- dm = j ftfng]- dm = 0
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since fEH and JngEUrL. Therefore  {//«}  is an independent se-

quence of functions in HiEH i.e., H has infinite dimension.

Theorem 3. If T is an infinite K-automorphism then Ut has de-

numerable Lebesgue spectrum.

Proof. By the Corollary to Theorem 1, F is either ergodic or com-

pletely dissipative. In the latter case Ut has denumerable Lebesgue

spectrum by Theorem 2. In the former case we can invoke Lemmas 1

and 2. Denote by H, the orthogonal complement of UtL in L where

L=L2iX, Ö, m). Then H has infinite denumerable dimension. Let

{/„} be an orthonormal basis of H. It is not difficult to see that

fijT-o UtL is the trivial subspace of L and U"=0 Uj>nL is dense in

L2(A, <B, m). Repeated application of the decomposition L = UTL®H

yields
00

L(X, <&,m)=   0   UnTH

n=—oo

and therefore   {fn,m} = { UrJn}  is an orthonormal basis such that

Urfn ,m = Ut    /n =/n ,m+l-

4. Conclusion. It only remains to give examples of ergodic infinite

■rT-automorphisms, and these are provided by the class of irreducible

aperiodic recurrent Markov chains, with stationary transition proba-

bilities and countable state space, which preserve a cr-finite infinite

measure [9].

If F is an infinite X-automorphism [infinite exact endomorphism ]

then F(W = FX FX • • • X F (fe times) is an infinite JC-automorphism

[infinite exact endomorphism]. If T is an infinite 2£-automorphism

then for some integer k it may happen that F(i) is ergodic but T{k+l)

is not ergodic. In fact this happens when Fw> is conservative and

jxh-d jg not conservative. This is precisely the phenomenon analysed

for Markov chains in [lO]. It follows that the ergodic index [lO] is

not a spectral invariant.
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