
RADII OF STAR-LIKENESS AND CLOSE-TO-CONVEXITY1

M. S. ROBERTSON

1. Introduction. Let (P denote the class of functions P(z) that are

regular and have a positive real part in the unit disc E (\z\ < 1) and

that are normalized so that P(0) = 1. We shall be concerned with two

classes of univalent functions that can be expressed in terms of P(z).

The first class, which we denote by Sa, consists of those spiral-like

analytic functions/(z), regular in E and normalized so that/(0) =0,

/'(0) = 1, with the property that

(      *? (*) )
(1.1) flUe»->  ^ 0        (   2    < 1)

for some fixed real number a, \a\ ¿w/2. It is well known [S] that

the functions/(z) of Sa are univalent in E. Also for the case a = 0 the

members of So are starlike in E. If f(z)ESa it follows easily that we

can write

2/'(2)
(1.2) eia-= (cos a)P(z) + i sin a.

/(z)

The second class that we shall consider and denote by Ca, consists

of those close-to-convex analytic functions F(z), regular in E and

normalized so that F(0)=0, F'(0) = 1, with the property that

i     zF'(z))
(1.3) (nie'« -V  ^ 0        (   2     < 1)

I       G(z)f "    '

for some fixed real number a, | a\ ^ir/2, and for some analytic func-

tion G(z), regular and starlike in E, normalized so that G(0)=0,

G'(0) = 1. In this case F(z) is said to be close-to-convex in E relative

to the convex function

(1.4) <b(z) = e~ia \      —^-dt        (\z\   < 1).

It is well known [2] that F(z) is univalent in E if F(z) is close-to-

convex in E.
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It should be observed that if fiz)ESa it does not follow that/(z)

is necessarily close-to-convex in E. For example, if a = ir/4 and /o(z)

is defined as the function

/o(z) = zexp{(t - 1) Log(l - iz)},

where Log denotes the principal branch of the logarithm function,

then it has been shown [4] that

(        */„'(»))         1     1 -  |z|2
& )e,in ±-i-K = —-L_L_ > o.

I /„(a) j       V2   | 1 -tz|2

However, w=/0(z) maps | z| = 1 onto a spiral curve C, covered twice,

so that /o(z) is not close-to-convex in E for this would require that

the tangent to C not turn back on itself through an angle exceeding

»[2].
We now define for a fixed a the radius of star-likeness for the class

Sa, and also for the class Ca the radius of close-to-convexity relative

to the normalized convex function eia<piz). Let/£S« be starlike and

univalent for \z\ <pdf) and in no larger circle. Then the radius of

star-likeness for the class Sa is denoted by pa and defined by the

equation

(1.5) pa = Km inf p«(/).

Similarly, let Fiz)ECa be close-to-convex relative to the normalized

convex function eia<biz) for \z\ <RaiF, <p) and in no larger circle.

Then the radius of close-to-convexity relative to eia<piz) for the class

Ca is denoted by Rai<j>) and defined by the equation

(1.6) Rai<b) = liminf i?Q(P, <*>)•
FeCa

It is the purpose of this note to show that for \a\ <ir/2

(1.7) Pa = Rai<t>) = [ | sin a |   + cos a]~' ^ 2-"2 = 0.707

It is of course well known [l] that every function A(z), regular,

univalent in E and normalized so that A(0)=0, A'(0) = 1, is starlike

for \z\ <tanh x/4 = 0.65 • • • . More recently, J. Krzyz [3] has shown

that A(z) is close-to-convex relative to some convex function for

\z\ <0.80
The trivial case a = 0 gives p0 = Rai<t>) = 1 as is to be expected.

2. Proof of (1.7). In (1.2) we let z = reie, Pireu)=uir, 8)+ivir, 8)

and obtain
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l's/'(2))
:<-> = (R[<ria(cosaP(2) + isina)]

= (R[(cos a — i sin a) {u cos a + ¿(sin a + v cos a)} ]

= cos a(u cos a + v sin a) + sin2 a.

(2.1)

For variable P(z) =u+iv and fixed r and a, \a\ ^w/2, we shall find

the minimum value of u cos a+v sin a.

By the Herglotz formula for P(z) we have

(2.2) P(z) =   f   P0(zei*) da(<t>)
Jo

where P0(z) = (l+z)(l—z)~1 and a(<b) is nondecreasing in [0, 2ir\

subject to the normalization P(0) = 1. For proper choice of a(cb),

P(z) reduces to Po(2e**). Because of (2.2) we can confine our atten-

tion in (2.1) to the case P(z) = P0(ze;*) with variable <p. In the latter

case we then have

1 - r2 2r sin (0 + <¡>)
v =

1 - 2r cos (0 + 4>) + r2 1 - 2r cos (0 + <¡>) + r2

(1 — r2) cos a + 2r sin a sin ß
u cos a + v sin a =

1 - 2r cos ß + r2

where ß = 8+<b.

For fixed r<l, and fixed a, \a\ ^ir/2, we require the value of

m(r, a) = min (u cos a + v sin a)
ß

= mm
ß

(1 — r2) cos a + 2r sin a sin ß~

1 - 2r cos ß + r2 J

This value is provided by the following lemma.

Lemma 1. Let r be a real number, 0^r<l. For all real a and ß the

following sharp inequality holds:

(1 — r2) cos a + 2r sin a sin ß      (1 + r2) cos a — 2r
(2.3)-^--

1 - 2r cos ß + r2 1 - r2

Proof. By cross multiplication and simplification it is easily seen

that the inequality (2.3) is equivalent to

[2r - (1 + r2) cos a] cos ß - [(1 - r2) sin a] sin ß

g (1 - 2r cos « + r2).
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For fixed r and a and variable ß the maximum value of the left-hand

side of (2.4) is the positive square root of the expression

[2r - (1 + r2) cos a]2 + [(1 - r2) sin a]2 = (1 - 2r cos a + r2)2.

Thus (2.4) and (2.3) are verified. It is easily seen that for given r and

a there exists a ß for which equality occurs in (2.4) and (2.3). Con-

sequently mir, a) is precisely the quantity on the right-hand side of

the inequality (2.3).

From the lemma and (2.1) it now follows for cos «2:0 and all real

ß, 0^r<l, that

cos a(w cos a + v sin a) + sin2 a

"(1 — r2) cos a + 2r sin a sin ß'
cosa

cosa

1 — 2r cos ß + r2

(1 + r2) cos a - 2r

+ sin2 a

1 - r2

1 — 2r cos a + r2 cos 2a

1 - r2

(1 — r cos a)2 — r2 sin2 a

+ sin2 a

From (2.1), (2.2) and the preceding discussion it now follows that

whenever

(ñ\eia --V ^ 0        (   z    < 1)

then

l m )
(1 — r cos a)2 — r2 sin2 a

/(z) Ï  ' ~T- r<

Thus, since \a\ ^ic/2,

(zf'iz)\ rl I !
. <->   ä0    for r ^ [ [ sin a |   + cos aj"

W(») '
öi-

Tb« maximum value of | sin a| +cosais 21/2and occurs fora= ±x/4.

Consequently /(z) is always starlike in |z| <2_1/2 = 0.707 • • • . Since

the inequality (2.3) is sharp it follows that for a given a, \a\ <ir/2,

there exists a value of <j> and a function Piz) which determines a cor-

responding spiral-like function /(z) for which
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(Zf'(z)) , rl    -       I 1
(ft <->  =0    on    2     =      sina    + cos ah1.

I f(z) ) I    I        U I

If a = +ir/2 we have the trivial case/(2) =2. This completes the proof

of (1.7) for the value of pa. The proof of (1.7) for the value of Ra((p)

is virtually the same as for pa with only obvious modifications.

We summarize our results in the following two theorems.

Theorem 1. Letf(z) be regular and univalent for \ z\ < 1 and normal-

ized so that/(0) =0,/'(0) = 1. For some a, \a\ £w/2, let

(      */'(*) ) «
(ñ<e*a --} è 0   for    2    < 1.

I       /(*) ) J     '    '

Then

\zf'(z) )        1 — 2r cos a + r2 cos 2a
(ñ

i m f -f(z) ) l-r2

andf(z) is starlike for \z\ ^p«= [| sin a\ +cos a]"1. The estimate for pa

is sharp for each a, \a\ <w/2.

Theorem 2. Let F(z) be regular and univalent for \z\ <1 and nor-

malized so that F(0) =0, F'(0) = 1. For some a, \a\ èir/2, let

í     zF'(z)) i    i

where G(z) is regular and starlike for |z| <1 and G(0)=0, G'(0) = 1.

Then F(z) is close-to-convex relative to the normalized convex function

r ' G(t)
eia<p(z) =   I    -dt = z + ■ ■ ■

Jo     t

for \z\ ^Ra((p) = [|sin a\ +cos a]-1. The estimate for Ra(<j>) is sharp

for each a, \a\ <ir/2.

For reference purposes we add the following theorem that is de-

rived by arguments similar to those used in this paper, in particular

from an application of Lemma 1. Since the proof involves only minor

and obvious changes we shall not include it here.

Theorem 3. Let g(z) be analytic in \z\ <1 and let g(0) = l. Let a

and y be real numbers subject to the inequalities \a\ <ir/2, \y\ <ir/2.

U
®-{eiag(z)} > 0    in | z\  < 1
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thenfor \z\ =r<l

, ,       cos y — 2r cos a + r2 cos (2a — y)
<R e<T«(«)    ^-

1 — r2

This inequality is sharp for each a and y.
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