RADII OF STAR-LIKENESS AND CLOSE-TO-CONVEXITY ${ }^{1}$

M. S. ROBERTSON

1. Introduction. Let P denote the class of functions $P(z)$ that are regular and have a positive real part in the unit disc $E(|z|<1)$ and that are normalized so that $P(0)=1$. We shall be concerned with two classes of univalent functions that can be expressed in terms of $P(z)$. The first class, which we denote by S_{α}, consists of those spiral-like analytic functions $f(z)$, regular in E and normalized so that $f(0)=0$, $f^{\prime}(0)=1$, with the property that

$$
\begin{equation*}
\mathfrak{R}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\} \geqq 0 \quad(|z|<1) \tag{1.1}
\end{equation*}
$$

for some fixed real number $\alpha,|\alpha| \leqq \pi / 2$. It is well known [5] that the functions $f(z)$ of S_{α} are univalent in E. Also for the case $\alpha=0$ the members of S_{0} are starlike in E. If $f(z) \in S_{\alpha}$ it follows easily that we can write

$$
\begin{equation*}
e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}=(\cos \alpha) P(z)+i \sin \alpha . \tag{1.2}
\end{equation*}
$$

The second class that we shall consider and denote by C_{α}, consists of those close-to-convex analytic functions $F(z)$, regular in E and normalized so that $F(0)=0, F^{\prime}(0)=1$, with the property that

$$
\begin{equation*}
\mathfrak{A}\left\{e^{i \alpha} \frac{z F^{\prime}(z)}{G(z)}\right\} \geqq 0 \quad(|z|<1) \tag{1.3}
\end{equation*}
$$

for some fixed real number $\alpha,|\alpha| \leqq \pi / 2$, and for some analytic function $G(z)$, regular and starlike in E, normalized so that $G(0) \pm 0$, $G^{\prime}(0)=1$. In this case $F(z)$ is said to be close-to-convex in E relative to the convex function

$$
\begin{equation*}
\phi(z)=e^{-i \alpha} \int_{0}^{z} \frac{G(t)}{t} d t \quad(|z|<1) . \tag{1.4}
\end{equation*}
$$

It is well known [2] that $F(z)$ is univalent in E if $F(z)$ is close-toconvex in E.

[^0]It should be observed that if $f(z) \in S_{\alpha}$ it does not follow that $f(z)$ is necessarily close-to-convex in E. For example, if $\alpha=\pi / 4$ and $f_{0}(z)$ is defined as the function

$$
f_{0}(z)=z \exp \{(i-1) \log (1-i z)\}
$$

where Log denotes the principal branch of the logarithm function, then it has been shown [4] that

$$
\mathcal{R}\left\{e^{\pi i / 4} \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}\right\}=\frac{1}{\sqrt{ } 2} \frac{1-|z|^{2}}{|1-i z|^{2}}>0 .
$$

However, $w=f_{0}(z)$ maps $|z|=1$ onto a spiral curve C, covered twice, so that $f_{0}(z)$ is not close-to-convex in E for this would require that the tangent to C not turn back on itself through an angle exceeding π [2].

We now define for a fixed α the radius of star-likeness for the class S_{α}, and also for the class C_{α} the radius of close-to-convexity relative to the normalized convex function $e^{i \alpha} \phi(z)$. Let $f \in S_{\alpha}$ be starlike and univalent for $|z|<\rho_{\alpha}(f)$ and in no larger circle. Then the radius of star-likeness for the class S_{α} is denoted by ρ_{α} and defined by the equation

$$
\begin{equation*}
\rho_{\alpha}=\liminf _{f \in S_{\alpha}} \rho_{\alpha}(f) \tag{1.5}
\end{equation*}
$$

Similarly, let $F(z) \in C_{\alpha}$ be close-to-convex relative to the normalized convex function $e^{i \alpha} \phi(z)$ for $|z|<R_{\alpha}(F, \phi)$ and in no larger circle. Then the radius of close-to-convexity relative to $e^{i \alpha} \phi(z)$ for the class C_{α} is denoted by $R_{\alpha}(\phi)$ and defined by the equation

$$
\begin{equation*}
R_{\alpha}(\phi)=\liminf _{F \in C_{\alpha}} R_{\alpha}(F, \phi) \tag{1.6}
\end{equation*}
$$

It is the purpose of this note to show that for $|\alpha|<\pi / 2$

$$
\begin{equation*}
\rho_{\alpha}=R_{\alpha}(\phi)=[|\sin \alpha|+\cos \alpha]^{-1} \geqq 2^{-1 / 2}=0.707 \cdots \tag{1.7}
\end{equation*}
$$

It is of course well known [1] that every function $h(z)$, regular, univalent in E and normalized so that $h(0)=0, h^{\prime}(0)=1$, is starlike for $|z|<\tanh \pi / 4=0.65 \cdots$. More recently, J. Krzyż [3] has shown that $h(z)$ is close-to-convex relative to some convex function for $|z|<0.80 \cdots$.

The trivial case $\alpha=0$ gives $\rho_{0}=R_{0}(\phi)=1$ as is to be expected.
2. Proof of (1.7). In (1.2) we let $z=r e^{i \theta}, P\left(r e^{i \theta}\right)=u(r, \theta)+i v(r, \theta)$ and obtain

$$
\begin{align*}
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} & =\mathfrak{R}\left[e^{-i \alpha}(\cos \alpha P(z)+i \sin \alpha)\right] \\
& =\mathfrak{A}[(\cos \alpha-i \sin \alpha)\{u \cos \alpha+i(\sin \alpha+v \cos \alpha)\}] \tag{2.1}\\
& =\cos \alpha(u \cos \alpha+v \sin \alpha)+\sin ^{2} \alpha .
\end{align*}
$$

For variable $P(z)=u+i v$ and fixed r and $\alpha,|\alpha| \leqq \pi / 2$, we shall find the minimum value of $u \cos \alpha+v \sin \alpha$.

By the Herglotz formula for $P(z)$ we have

$$
\begin{equation*}
P(z)=\int_{0}^{2 \pi} P_{0}\left(z e^{i \phi}\right) d \alpha(\phi) \tag{2.2}
\end{equation*}
$$

where $P_{0}(z)=(1+z)(1-z)^{-1}$ and $\alpha(\phi)$ is nondecreasing in $[0,2 \pi]$ subject to the normalization $P(0)=1$. For proper choice of $\alpha(\phi)$, $P(z)$ reduces to $P_{0}\left(z e^{i \phi}\right)$. Because of (2.2) we can confine our attention in (2.1) to the case $P(z)=P_{0}\left(z e^{i \phi}\right)$ with variable ϕ. In the latter case we then have

$$
\begin{gathered}
u=\frac{1-r^{2}}{1-2 r \cos (\theta+\phi)+r^{2}}, \quad v=\frac{2 r \sin (\theta+\phi)}{1-2 r \cos (\theta+\phi)+r^{2}} \\
u \cos \alpha+v \sin \alpha=\frac{\left(1-r^{2}\right) \cos \alpha+2 r \sin \alpha \sin \beta}{1-2 r \cos \beta+r^{2}},
\end{gathered}
$$

where $\beta=\theta+\phi$.
For fixed $r<1$, and fixed $\alpha,|\alpha| \leqq \pi / 2$, we require the value of

$$
\begin{aligned}
m(r, \alpha) & =\min _{\beta}(u \cos \alpha+v \sin \alpha) \\
& =\min _{\beta}\left[\frac{\left(1-r^{2}\right) \cos \alpha+2 r \sin \alpha \sin \beta}{1-2 r \cos \beta+r^{2}}\right] .
\end{aligned}
$$

This value is provided by the following lemma.
Lemma 1. Let r be a real number, $0 \leqq r<1$. For all real α and β the following sharp inequality holds:

$$
\begin{equation*}
\frac{\left(1-r^{2}\right) \cos \alpha+2 r \sin \alpha \sin \beta}{1-2 r \cos \beta+r^{2}} \geqq \frac{\left(1+r^{2}\right) \cos \alpha-2 r}{1-r^{2}} . \tag{2.3}
\end{equation*}
$$

Proof. By cross multiplication and simplification it is easily seen that the inequality (2.3) is equivalent to

$$
\begin{align*}
{\left[2 r-\left(1+r^{2}\right) \cos \alpha\right] \cos \beta-\left[\left(1-r^{2}\right)\right.} & \sin \alpha] \sin \beta \\
& \leqq\left(1-2 r \cos \alpha+r^{2}\right) . \tag{2.4}
\end{align*}
$$

For fixed r and α and variable β the maximum value of the left-hand side of (2.4) is the positive square root of the expression

$$
\left[2 r-\left(1+r^{2}\right) \cos \alpha\right]^{2}+\left[\left(1-r^{2}\right) \sin \alpha\right]^{2}=\left(1-2 r \cos \alpha+r^{2}\right)^{2}
$$

Thus (2.4) and (2.3) are verified. It is easily seen that for given r and α there exists a β for which equality occurs in (2.4) and (2.3). Consequently $m(r, \alpha)$ is precisely the quantity on the right-hand side of the inequality (2.3).

From the lemma and (2.1) it now follows for $\cos \alpha \geqq 0$ and all real $\beta, 0 \leqq r<1$, that

$$
\begin{aligned}
\cos \alpha & \alpha \cos \alpha+v \sin \alpha)+\sin ^{2} \alpha \\
& =\cos \alpha\left[\frac{\left(1-r^{2}\right) \cos \alpha+2 r \sin \alpha \sin \beta}{1-2 r \cos \beta+r^{2}}\right]+\sin ^{2} \alpha \\
& \geqq \cos \alpha\left[\frac{\left(1+r^{2}\right) \cos \alpha-2 r}{1-r^{2}}\right]+\sin ^{2} \alpha \\
& =\frac{1-2 r \cos \alpha+r^{2} \cos 2 \alpha}{1-r^{2}} \\
& =\frac{(1-r \cos \alpha)^{2}-r^{2} \sin ^{2} \alpha}{1-r^{2}} .
\end{aligned}
$$

From (2.1), (2.2) and the preceding discussion it now follows that whenever

$$
\mathfrak{R}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\} \geqq 0 \quad(|z|<1)
$$

then

$$
\mathfrak{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq \frac{(1-r \cos \alpha)^{2}-r^{2} \sin ^{2} \alpha}{1-r^{2}}
$$

Thus, since $|\alpha| \leqq \pi / 2$,

$$
\mathcal{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq 0 \quad \text { for } r \leqq[|\sin \alpha|+\cos \alpha]^{-1}
$$

The maximum value of $|\sin \alpha|+\cos \alpha$ is $2^{1 / 2}$ and occurs for $\alpha= \pm \pi / 4$. Consequently $f(z)$ is always starlike in $|z|<2^{-1 / 2}=0.707 \cdots$, Since the inequality (2.3) is sharp it follows that for a given $\alpha,|\alpha|<\pi / 2$, there exists a value of ϕ and a function $P(z)$ which determines a corresponding spiral-like function $f(z)$ for which

$$
\mathcal{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}=0 \quad \text { on }|z|=[|\sin \alpha|+\cos \alpha]^{-1}
$$

If $\alpha= \pm \pi / 2$ we have the trivial case $f(z) \equiv z$. This completes the proof of (1.7) for the value of ρ_{α}. The proof of (1.7) for the value of $R_{\alpha}(\phi)$ is virtually the same as for ρ_{α} with only obvious modifications.

We summarize our results in the following two theorems.
Theorem 1. Let $f(z)$ be regular and univalent for $|z|<1$ and normalized so that $f(0)=0, f^{\prime}(0)=1$. For some $\alpha,|\alpha| \leqq \pi / 2$, let

$$
\mathcal{R}\left\{e^{i \alpha} \frac{z f^{\prime}(z)}{f(z)}\right\} \geqq 0 \quad \text { for }|z|<1
$$

Then

$$
\mathcal{R}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geqq \frac{1-2 r \cos \alpha+r^{2} \cos 2 \alpha}{1-r^{2}}
$$

and $f(z)$ is starlike for $|z| \leqq \rho_{\alpha}=[|\sin \alpha|+\cos \alpha]^{-1}$. The estimate for ρ_{α} is sharp for each $\alpha,|\alpha|<\pi / 2$.

Theorem 2. Let $F(z)$ be regular and univalent for $|z|<1$ and normalized so that $F(0)=0, F^{\prime}(0)=1$. For some $\alpha,|\alpha| \leqq \pi / 2$, let

$$
\mathfrak{R}\left\{e^{i \alpha} \frac{z F^{\prime}(z)}{G(z)}\right\} \geqq 0 \quad(|z|<1)
$$

where $G(z)$ is regular and starlike for $|z|<1$ and $G(0)=0, G^{\prime}(0)=1$. Then $F(z)$ is close-to-convex relative to the normalized convex function

$$
e^{i \alpha} \phi(z)=\int_{0}^{z} \frac{G(t)}{t} d t=z+\cdots
$$

for $|z| \leqq R_{\alpha}(\phi)=[|\sin \alpha|+\cos \alpha]^{-1}$. The estimate for $R_{\alpha}(\phi)$ is sharp for each $\alpha,|\alpha|<\pi / 2$.

For reference purposes we add the following theorem that is derived by arguments similar to those used in this paper, in particular from an application of Lemma 1 . Since the proof involves only minor and obvious changes we shall not include it here.

Theorem 3. Let $g(z)$ be analytic in $|z|<1$ and let $g(0)=1$. Let α and γ be real numbers subject to the inequalities $|\alpha|<\pi / 2,|\gamma|<\pi / 2$. If

$$
\mathfrak{R}\left\{e^{i \alpha} g(z)\right\}>0 \quad \text { in }|z|<1
$$

```
then for \(|z|=r<1\)
\[
\mathfrak{R}\left\{e^{i \gamma} g(z)\right\} \geqq \frac{\cos \gamma-2 r \cos \alpha+r^{2} \cos (2 \alpha-\gamma)}{1-r^{2}}
\]
```

This inequality is sharp for each α and γ.
References

1. H. Grunsky, Zwei Bemerkungen zur konformen Abbildung, Jber. Deutsch. Math.-Verein. 43 (1934), 140-143.
2. W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169-185.
3. J. Krzyż, The radius of close-to-convexity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 201-204.
4. J. Krzyż and Z. Lewandowski, On the integral of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 11 (1963), 447-448.
5. Lad. Špǎ̌ek, Contribution à la theorie des fonctions univalentes, Časopis Pěst. Mat. Fys. 62 (1933), 12-19.

Rutgers, The State University

[^0]: Presented to the Society, February 2, 1965; received by the editors August 5, 1964.
 ${ }^{1}$ The author acknowledges support for this research from the National Science Foundation under contract NSF-GP-1659.

