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1. Introduction. Let /(xi, • • • , x„) be a real valued continuous

function defined in an ra-dimensional region R and let it be a solution

of the overdetermined system of partial differential equations

(1.1) Piid/dx)f =0        (lata«)

where x = (xi, • • • , xn), d/dx — id/dxi, ■ ■ ■ , d/dxn). The P¿'s are as-

sumed to be homogeneous polynomials with real coefficients. The

term solution is used to include the generalized solutions. A general-

ized solution is any function continuous on R which is a uniform limit

on compact subsets of C°° solutions (see [2, p. 65]).

We wish to characterize those systems (1.1) for which all solutions

satisfy a difference equation

N

(1.2) E M./(* + ty>) = 0,    xER,    0 < t < u.
¿-i

The y i s denote the vectors (y,i, • • ■ , y in). The p¿'s are real numbers

such that Ei-iM» = 0. The two dimensional wave equation

id*/dxl - d2/dx\)f = 0

is a well known example of such a system. In this case

Pi = Pi = 1, ps = Pi = — 1,

yi= (1,0),    y2= (-1,0),

y3= (0,1),    y4=(0,-l).

The above described systems are characterized in §2. If the system

consists of just one equation, then we obtain a geometric criterion on

the discrete measure ju which guarantees that all solutions of (1.1)

satisfy (1.2). We also obtain for this case a geometric criterion on p

insuring that (1.1) is equivalent to (1.2).

2. The characterization of systems whose solutions satisfy the

difference equation (1.2). We require the following two lemmas which

are of independent interest. We use the notation x-y = Xiyi-\- ■ ■ •

+xnyn-

Presented to the Society, January 24, 1964; received by the editors July 15, 1964.

858



PARTIAL DIFFERENTIAL AND DIFFERENCE EQUATIONS 859

Lemma 1. Let 'ñ be a homogeneous ideal and let M% be its associated

manifold of complex zeros. Let XXi aie'l<x = 0 whenever x£ M%. Then

21 contains a polynomial which factors into linear homogeneous terms.

If the y/s are real, then the linear terms have real coefficients.

It follows that if 2Í = (P), then P splits into linear homogeneous

factors.

Proof. Let xEM%. Since 21 is a homogeneous ideal zxEMn for

complex z. Hence XX i a» exp[y¿-x]2 = 0 for all complex z. This is

clearly impossible unless some of the (y,-i)'s are identical. Thus R(x)

~ Tlisi<jsN (y< — yi) -x = 0 whenever xEM%. It follows from Hu-

bert's Nullstellensatz that i?*£3l for some positive integer k. Rk is

the desired polynomial.

The functions discussed in Lemma 2 and in the remainder of the

paper are assumed to be real valued.

Lemma 2. Let f be a C°° solution of P(d/dx)f=0 for all x and let
P(x) = IXj_i I^ix) where the L/s denote distinct linear homogeneous

factors. Then f=fi+f2+ • • ■ +/r where f, (l^j^r) is a Cx solution

of Lf(d/dx)f] = 0.

Proof. The proof is by induction on r. Assume that the lemma

holds for r-1. Let ffcml L*/(d/dx)f=0 so that

(2.1) Ù(d/dx)f = gi + g2 + ■ ■ ■ + £r_!

where gjECK and Lf(d/dx)gj = Q (1 ̂ j^r — 1). Suppose that we have

r —1 C°° functions/i, • • • , fT-i where

(2.2) Lkr\d/dx)fj = gi,      L/(d/dx)fj = Q       (líj'ár-1),

It follows from (2.1) and (2.2) that

(2.3) Lr'(d/dx)[f-  (/!+•••  +fr-l)]   = 0.

Thus/=/i+ ■ • ■ +frECx and L?(d/dx)fr = 0. It remains to demon-

strate the existence of the functions fi, • • ■ , fr~y We demonstrate

the existence of/r, the existence of/2, • • ■ ,/r_i is shown in a similar

fashion.

We choose a linear transformation x = 7'£ such that the equations

(2.4) Li(d/dx)gi = 0,    Li(d/dx)fi = 0,    LkT'(d/dx)fi = gi

are transformed into

(2.5) aVí-O,    dklfi/d£=0,   dk'fi/dÍ2  = gy
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It follows by direct integration that gi = Ai+A2t;i+ ■ ■ ■ +Ak-i^i '

where Ai,A2, ■ • • , Ak-i are C°° functions of £2, • • •, £*• We define/i as

(2.6) /i(ii, • ■ • , {„) = E ii"1    f '¿<(r, f„ • • • , {»)(fc - r)*""1*-.
i-l •/ 0

It is readily seen that/i(£i, ■••,£„) E Cx and satisfies ô*1/1/ôiî1=0,

dk'fi/d§ = gi.
We remark that the above result holds if fix) is defined in a sphere

|x| <e(|x| =-\/(#i+ - - • +*«)) instead of all space, the proof being

the same as the one given above. It follows furthermore, from the

above proof that each f¡ may be written as

(2.7) /,-= E^,(U • • ■ ,tjn)£n
»-i

where   x = Tjj-j,   T¡  being  an   orthogonal   transformation   and   (•#

= L3(x)/(Et-i a%)112, Ljix) =aj-x. These remarks will be used in the

proofs of theorems (2.1) and (2.2).

We now state our main result.

Theorem 2.1. Suppose that all solutions of (1.1) satisfy (1.2) for a

fixed x and a fixed t>0. Then the ideal (P = (Pi, • • • , Pm) contains a

polynomial which splits into homogeneous linear factors. Conversely if

(9 contains such a polynomial then there exists a set of real numbers

Pi. " • • > Pn with YJL, pi = 0 such that all solutions of (1.1) satisfy

(1.2).

Proof. Let ez'x be a solution of (1.1); i.e. P,(z)=0 (lá*á*»). If

all solutions of (1.1) satisfy (1.2) for a fixed x and a fixed />0, then

YJ.i pie'"'¡ = 0 whenever P¿(z)=0 il^i^m). By Lemma 1, the

ideal (P contains a polynomial which splits into real linear homo-

geneous factors.

Conversely let (P contain a polynomial P(x) = üy_i L)>ix), the

L,'s being distinct linear factors. Then P(r3/r3x)/=0 provided / is

a C°° solution of (1.1). By Lemma 2,fiy) = Y^f_1fjiy) for | x — y\ <ex,

fi being a Cx solution of L?id/dy)fj = 0. Let Ay(i)/=/(x+toy)-/(x)

where L,(x)=ayx and let g,-(s) =/,-(« +say). Then gfis)=L*>id/dx)

■/(x + sa,) =0 so that gjis) is a polynomial of degree <Ay. It follows

that Af(i)/y = 0 for í sufficiently small. Letting A(î) =AÎ1(/) • • • Aj*(i)

we have

(2.8) A(/)/=0

for ¿ sufficiently small. (2.8) can clearly be rewritten in the same form

as (1.2). Since every solution is a uniform limit of C°° solutions on
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every compact subset of R, we have all solutions of (1.1) satisfying

A(i)/=0.
In the case where system (1.1) consists of just one equation

P(d/dx)f=0 we can easily obtain a geometric condition on the dis-

crete measure ß which insures that all solutions satisfy (1.2). In

view of Theorem (2.1) we assume P=Hj_iL/f, the L/s denoting

the distinct linear homogeneous factors. We obtain the following re-

sult.

Theorem 2.2. The solutions of P(d/dx)f=0 satisfy (1.2) if and only

if for any line I perpendicular to the hyper plane L;(x)=0 (l^i^r)

we have

(2.9) £' ßiL)(yi) = 0        (0^^,-1)

where the summation is extended over all y, which lie on I. P(d/dx)f = 0

is equivalent to (1.2) if and only if (2.9) holds and ß has a nonvanishing

moment of order Eî-i kj.1

Proof. Suppose all solutions of P(d/dx)f=0 satisfy (1.2). For

each j (1^-j^r) we introduce an orthogonal transformation y=Tfe

where

E aik )   ; LAy) = E ajkyk.
k—l / k~l

Let yi=T& (l^i^N) and let g(£)=f(x+T£). Equation (1.2) is

transformed into

(2.10) Em*0&) = O.
¿=i

We choose g(&, -- ■ • , fc.) =8*&,) where KEC°°, £„ = (fc, •••,£,),
and O^s^kj-l.f will then satisfy P(d/dx)f = 0and (2.10) becomes

(2.11) ¿ m¿*(%) = 0.

Let h, • • • , lq denote those lines perpendicular to the hyperplane

Lj(x) = 0 and containing at least one mass point ju¿. Let rjk denote the

£„ co-ordinate of lk. For each lk (l^k^q) choose a K to be =0 at

tt)j (l^j^q, j^k), and =1 at tr\k. (2.11) then becomes

(2.12) Em' = 0

1 The order of moment the fy"1 • • • y""d^{y) is defined to be ai+ • • ■ +an.
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or equivalently

(2.13) Y.'piLjiyi) = Q

the summation being extended over all y¿ which lie on lk.

Conversely suppose that (2.9) holds. Let/be a C° function satisfy-

ing P(ß/dx)f=0. By Lemma 2, /(x+y) =/i(y) + • • ■ +/r(y) for

\y\ <«i where Lfid/dy)fj = 0 (1 Sj:£r). It follows from the represen-

tation (2.6) that Ef-i M./¿(s + ty,) =0 for 0 < t < ex. Hence

YJ=1 Pifix+ty,) =0 for 0<t <ex. The same result is obtained for any

solution by finding a sequence of C" functions/i,/2, • • • , satisfying

P(d/dx)/y = 0 (l5ij'<co) and tending to/ uniformly on compact

subsets of R.

To prove the second part of theorem (2.2) we first remark that

condition (2-9) implies P\Qk (î^A<») where Qk=YJ_1piix-yiy.

For let

x' = Tjx, y' = Ta, y! = Tat (1 S » S iV), &(FjV) = Í,Piix',yí)k.
«—i

Condition (2.9) implies that x^'l Çy'(x') or Ly-'lo*,. (l^j^r). Hence

P| Ci- If M has a nonvanishing moment of order M= Ej-i ^y then

Cmp^O and P Qm means that Qm = cP where c is a constant p^O. If

f EC and satisfies (1.2), then/is a solution of Qkid/dx)f = 0 (1 ̂  A < «> ).
The proof of this is identical with the proof of theorem (2.1) in [l].

Thus if condition (2.9) holds and if p has a nonvanishing moment of

order M, then all solutions of (1.2) satisfy Qj/(d/dx)/=0 so that

P(d/dx)/=0 and (1.1) are equivalent.

Suppose now that all moments of order M vanish. Let P(x)

= El'l=jvi csx* where s = (si, • • • ,s„), \s\ =si+ • • • +s„, x' — x\l • • •

x^n, s! = si! • • • s„!. Then

Pid/dx)P =   E sic] pi 0,

E M¿P(* + tyO = E ¿7A ! • Qkid/dx)f = 0
,=0 /.'=0

so that (2.1) and Pid/dx)f = 0 are not equivalent. Hence the equival-

ence implies condition (2.8) and the existence of a nonvanishing

moment of order M.

Stated differently, (1.2) is equivalent to IJy-i Lfid/dx)f=0 pro-
vided (2.9) holds and Ey=i ^y is the smallest order of a nonvanishing

moment of p. We illustrate this result with the following example.
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Let N = 9; let y¿ (1^î^9) denote the nine lattice points (xi, x2)

with 0^xi^2, 0^X2^2. The mass ß of the point y,- is given by the

number next to the point (see diagram). A direct calculation shows

that the first nonvanishing moment is of order 3 and it can be seen

by inspection that condition (2.9) is not fulfilled. Hence, in this case

(1.2) is not equivalent to a single equation P(d/dx)f = 0.
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