ON POINTS OF JACOBIAN RANK k. II

P. T. CHURCH¹

In this paper the following theorem is proved:

THEOREM 1. Let $f: M^n \to N^p$ be C^r , where M^n and N^p are C^r manifolds, and let $R_k(f)$ be the set of points in M^n at which the Jacobian matrix of f has rank at most k ($0 \le k \le \min(n, p)$). Let $i_*: \pi_m(N^p - f(R_k)) \to \pi_m(N^p)$ be the homomorphism on the mth homotopy groups induced by the inclusion map i. Then i_* is an isomorphism (onto) for $m+k \le p-2$ and $r \ge \max(n-p+m+1, 1)$.

In the previous paper [3] this theorem was proved except that the hypothesis " C^n ", rather than " C^r , where $r \ge \max(n-p+m+2, 1)$ " etc., was used. Besides improving the differentiability hypothesis, the present proof is shorter, and shows the connection between this theorem and a theorem of Thom [10, p. 26]. On the other hand, this proof does not yield [3, (1.2)], whose proof requires almost all the lemmas of that paper.

From the examples of [3, p. 421, (3.3)] it follows that the differentiability hypotheses of Theorem 1 are the best possible for all n, p, and m with $0 \le p - n \le m$. A new proof of [2, p. 88, (1.3)] is also given (Proposition 4).

Manifolds in this note are separable, without boundary, but not necessarily connected.

REMARK 2. In his proof of [10, p. 26, Theorem I.5] Thom used a theorem of A. P. Morse [10, p. 20]; if Sard's Theorem [9] is used instead, the differentiability hypothesis can be changed from C^n to $C^{\max(n-q+1,1)}$. Also, in [10, Theorem I.6] the hypothesis C^1 suffices.

Furthermore, if r is any positive integer and H on p. 22 of [10] is the group of C^r diffeomorphisms rather than C^n , then Thom's proof of Theorem I.5 actually yields A a C^r diffeomorphism.

The following lemma is essentially [3, p. 419, (3.2)] with improved differentiability hypotheses.

LEMMA 3. Let $f: M^n \to N^p$ be a C^r map, where M^n and N^n are C^r manifolds, let k be an integer with $0 \le k \le \min(n, p)$, let Q be a finite polyhedron with dim $Q \le p-1-k$, and let $r \ge \max(n-p+\dim Q+1,1)$. Let ϵ be positive, let $\Delta \subset Q$ be a subpolyhedron, and let $\alpha: Q \to N^p$ be a

Received by the editors July 10, 1964.

¹ Research supported in part by National Science Foundation Grant GP 2193.

map such that $\alpha(\Delta) \cap f(R_k(f)) = \emptyset$. Then there exists a map $\gamma: Q \to N^p$ such that $\gamma(Q) \cap f(R_k(f)) = \emptyset$, $\alpha \mid \Delta = \gamma \mid \Delta$, and the uniform distance $d(\alpha, \gamma) < \epsilon$.

PROOF. We may suppose that M^n and N^p are C^{∞} manifolds [6, p. 41]. By the Whitney Embedding Theorem N^p has a complete Riemannian metric g, and we may as well suppose that its given distance function d is that induced by g [5, p. 166, (3.5)].

Let Y be any compact set in M^n ; we first prove the lemma for $R_k(f)$ replaced by $Y \cap R_k(f)$. Let $\mu = d(\alpha(\Delta), f(Y \cap R_k(f)))$, and let $V = \{x \in N^p : d(x, \alpha(\Delta)) < \mu/2\}$. We may suppose that $\epsilon < \mu/2$. Since \overline{V} is compact [5, p. 172], there exists ν , $0 < \nu < \epsilon$, such that for each $z \in \overline{V}$ the open ball $U(z, \nu)$ with center z and radius ν is that given by [5, p. 149, (8.7)]. There exists an open neighborhood W of Δ such that $\overline{W} \neq Q$ and $\alpha(\overline{W}) \subset V$.

We will define a map $\beta: Q \to N^p$ such that $d(\alpha, \beta) < \nu$ and $\beta(Q) \cap f(Y \cap R_k(f)) = \emptyset$. The manifold N^p has a triangulation induced by the differential structure [6, p. 101, (10.6)]; let $\delta: Q \to N^p$ be a simplicial approximation to α with $d(\alpha, \delta) < \nu/2$. Let Γ_i $(i = 1, 2, \dots, s)$ be the (open) simplices of the polyhedron $\delta(Q)$, in order of increasing dimension.

If I is the identity diffeomorphism on N^p , there is ([10, p. 26] and Remark 2) a C^r diffeomorphism A of N^p onto itself such that the uniform distance $d(A, I) < \nu/4$ and f is transverse regular [10, p. 22] on $A^{-1}(\Gamma_1)$. Since f has rank at least $p - \dim(\Gamma_1)$ (= p) at each point of $f^{-1}(A^{-1}(\Gamma_1))$ (it may be empty), and $k + 1 \leq p - \dim Q$, $A^{-1}(\Gamma_1) \cap f(R_k(f)) = \emptyset$. Since a C^r diffeomorphism may be approximated by a C^∞ diffeomorphism ([6, p. 39, (4.5)]; the f_1 in (4.3) and (4.5) may be chosen to approximate f), there is a C^∞ diffeomorphism f such that f0, f1, f2, f3, f4, f5. Let f4 and f5.

We continue by induction. Suppose that a C^{∞} diffeomorphism Ψ_i of N^p onto itself has been defined such that

$$(\mathfrak{P}_i) \ d(\Psi_i, I) < (2^{-1} - 2^{-i-1})\nu \ \text{and} \ \Psi_i \left(\bigcup_{j=1}^i \Gamma_j\right) \cap f(Y \cap R_k(f)) = \varnothing.$$

Choose ξ such that $0 < \xi < 2^{-i-2}\nu$ and (since $\bigcup_{j=1}^{i} \Gamma_{j}$ is compact)

$$\xi < d\left(\Psi_i\left(\bigcup_{j=1}^i \Gamma_j\right), f(Y \cap R_k(f))\right).$$

As above, there is a C^r diffeomorphism A of N^p onto itself such that $d(A, I) < \xi$ and f is transverse regular on $A^{-1}(\Psi_i(\Gamma_{i+1}))$. Again

$$A^{-1}(\Psi_i(\Gamma_{i+1})) \cap f(Y \cap R_k(f)) = \emptyset,$$

and we may suppose that A is C^{∞} . Let $\Psi_{i+1} = A^{-1}\Psi_i$; Ψ_{i+1} satisfies condition \mathfrak{P}_{i+1} . The map $\beta = \Psi_i \delta$ satisfies the desired conditions: $d(\alpha, \beta) < \nu$ and $\beta(Q) \cap f(Y \cap R_k(f)) = \emptyset$.

For each $x \in \overline{U}$, $\beta(x) \in V(\alpha(x), \nu)$. Let t be the continuous real valued function defined on Q by

$$t(x) = d(x, \Delta)[d(x, \Delta) + d(x, Q - W)]^{-1}.$$

For each $x \in W$, let $\gamma(x)$ be the (unique) point on the geodesic joining $\alpha(x)$ to $\beta(x)$ in $U(\alpha(x), \nu)$ [5, p. 166, Theorem 3.6] such that

$$t(x) = d(\alpha(x), \gamma(x))[d(\alpha(x), \beta(x))]^{-1};$$

for each $x \in Q - W$, let $\gamma(x) = \beta(x)$. It follows from the proof of [5, p. 150, Lemma 2] that $\gamma: Q \to N^p$ is continuous (if ϕ is the diffeomorphism of that lemma, then $\gamma(x) = \exp(t(x) \cdot \phi^{-1}(\alpha(x), \beta(x)))$, where \cdot is scalar multiplication in E^p). Since t = 0 on Δ , $\gamma | \Delta = \alpha | \Delta$; since $\gamma | (Q - W) = \beta | (Q - W)$, $\gamma(Q - W) \cap f(Y \cap R_k(f)) = \emptyset$. Since $\gamma(x) \in U(\alpha(x), \nu)$ for each $x \in W$, and $\nu < \epsilon < \mu/2$, $d(\alpha(x), \gamma(x)) < \mu/2$ for each $x \in W$; and since $\alpha(\overline{W}) \subset V$, $d(\alpha(x), \alpha(\Delta)) < \mu/2$ also. It follows that $\gamma(W) \cap f(Y \cap R_k(f)) = \emptyset$. This completes the proof in case $R_k(f)$ is replaced by $Y \cap R_k(f)$, where Y is any compact subset of M^n .

The manifold $M^n = \bigcup_{j=1}^{\infty} Y_j$, where $Y_j \subset Y_{j+1}$ and Y_j is compact. Define inductively a sequence of maps $\gamma_j : Q \to N^p(\gamma_0 = \alpha)$ such that

$$d(\gamma_j(Q), f(Y_j \cap R_k(f))) > 0$$

(call it η_j), $\gamma_j | \Delta = \gamma_{j-1} | \Delta$, and $d(\gamma_j, \gamma_{j-1}) < 2^{-j}\zeta$, where $\zeta < \min(\epsilon, \eta_i)$ $(i = 1, 2, \dots, j-1; j = 1, 2, \dots)$. Since N^p is a complete metric space, the limit of the γ_j exists, call it γ ; it is the desired map. To prove that $\gamma(Q) \cap f(R_k(f)) = \emptyset$, one observes that $\gamma(Q) \cap f(Y_j \cap R_k(f)) = \emptyset$ $(j = 1, 2, \dots)$.

Theorem 1 is an easy consequence of Lemma 3 [3, p. 421].

The following statement was originally proved by the author [2, p. 88, (1.3)] under the hypothesis C^n , and then by Sard [8, §5, Theorem 2] under the present hypothesis.

PROPOSITION 4. If M^n and N^p are $C^{\max(n-k,1)}$ manifolds, and $f: M^n \to N^p$ is $C^{\max(n-k,1)}$, then $\dim(f(R_k(f))) \leq k$. In particular, if M^n and N^n are C^1 manifolds and $f: M^n \to N^n$ is C^1 , then $\dim(f(M^n)) \leq n$.

We now observe that this theorem can also be obtained from Thom's theorem [10, p. 26].

PROOF. We may suppose that $N^p = E^p$, and prove that $\dim(f(Y \cap R_k(f))) \leq k$, where Y is any compact subset of M^n . Suppose

the contrary, i.e., $\dim(f(Y \cap R_k(f))) \ge k+1$. There exists a compact subset C of $f(Y \cap R_k(f))$ such that the homomorphism

$$i^*: H^k(f(Y \cap R_k(f)); Z) \to H^k(C; Z)$$

(of the Čech cohomology groups with integer coefficients) induced by inclusion is not onto [4, p. 151]. The Alexander Duality Theorem [1, p. 52] applied separately to $f(Y \cap R_k(f))$ and C yields a homomorphism

$$j_*: H_{p-k-1}(E^p - f(Y \cap R_k(f)); Z) \to H_{p-k-1}(E^p - C; Z)$$

(of the Čech homology groups with compact support—augmented in dimension zero) which is also not onto. Moreover j_* is induced by inclusion. (The author is grateful to F. Raymond for verifying this fact; cf. also [7, §5].)

Let z be a polyhedral cycle of E^p-C whose homology class γ is not in the range of j_* , and let Γ be the carrier of z. Applications of [10, p. 26] as in Lemma 3 yield a cycle $y \in \gamma$ with carrier $A^{-1}(\Gamma)$ disjoint from $f(Y \cap R_k(f))$. Thus γ is in the range of j_* and a contradiction results.

There is a shorter and more natural proof by induction using Thom's theorem and the inductive definition of dimension; unfortunately it requires the hypothesis C^n .

REFERENCES

- 1. P. S. Aleksandrov, *Combinatorial topology*, Vol. 3, Graylock Press, Albany, N. Y., 1960.
- 2. P. T. Church, Differentiable open maps on manifolds, Trans. Amer. Math. Soc. 109 (1963), 87-100.
- 3. ——, On points of Jacobian rank k, Trans. Amer. Math. Soc. 110 (1964), 413-423.
- 4. W. Hurewicz and H. Wallman, Dimension theory, Princeton Univ. Press, Princeton, N. J., 1941.
- 5. S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. I, Interscience, New York, 1963.
- 6. J. R. Munkres, *Elementary differential topology*, Princeton Univ. Press, Princeton, N. J., 1963.
- 7. F. Raymond, Local cohomology groups with closed supports, Math. Z. 76 (1961), 31-41.
- 8. A. Sard, Hausdorff measure of critical images on Banach manifolds, Amer. J. Math 87 (1965), 158-174.
- 9. ——, The measure of the critical values of differentiable maps, Bull. Amer. Math. Soc. 48 (1942), 883-890.
- 10. R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17–86.

SYRACUSE UNIVERSITY