
ON POINTS OF JACOBIAN RANK k. II

P. T. CHURCH1

In this paper the following theorem is proved:

Theorem 1. Letf: Mn-*NP be C, where Mn and Np are Cr manifolds,

and let Rk(f) be the set of points in Mn at which the Jacobian matrix of

fhas rank at most k (0 = k = min(«, p)). Let H : Trm(N» —f(Rk))-^irm(Np)

be the homomorphism on the mth homotopy groups induced by the inclu-

sion map i. Then i* is an isomorphism (onto) for m-\-k^p — 2 and

r = max(w — p + m + 2, 1), and is onto for m + k = p — 1 and

r = max(w— p-\-m-\-\, 1).

In the previous paper [3] this theorem was proved except that the

hypothesis "C"", rather than "C, where r;>max(«—p-\-m+2, 1)"

etc., was used. Besides improving the differentiability hypothesis, the

present proof is shorter, and shows the connection between this theo-

rem and a theorem of Thorn [10, p. 26]. On the other hand, this proof

does not yield [3, (1.2)], whose proof requires almost all the lemmas

of that paper.

From the examples of [3, p. 421, (3.3)] it follows that the differ-

entiability hypotheses of Theorem 1 are the best possible for all «, p,

and m with Q^p — n^m. A new proof of [2, p. 88, (1.3)] is also given

(Proposition 4).

Manifolds in this note are separable, without boundary, but not

necessarily connected.

Remark 2. In his proof of [10, p. 26, Theorem 1.5] Thorn used a

theorem of A. P. Morse [10, p. 20]; if Sard's Theorem [9] is used

instead, the differentiability hypothesis can be changed from C" to

C>ax(n-3+i,i>_ Also, in [10, Theorem 1.6] the hypothesis C1 suffices.

Furthermore, if r is any positive integer and Hon p. 22 of [lO] is

the group of CT diffeomorphisms rather than Cn, then Thorn's proof

of Theorem 1.5 actually yields A a CT diffeomorphism.

The following lemma is essentially [3, p. 419, (3.2) ] with improved

differentiability hypotheses.

Lemma 3. Let f: M"-*NP be a CT map, where Mn and N" are Cr

manifolds, let k be an integer with 0 = A = min(«, p), let Q be a finite

polyhedron with dim Q^p — i — k, and let r ^max(«—p+dim Q-\-1,1).

Let e be positive, let AQQ be a subpolyhedron, and let a: Q-+N" be a
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map such that a(A)C\f(Rk(f)) = 0. Then there exists a map 7: Q-+Np

such that y(Q)f^f(Rk(f)) = 0, a|A=7|A, and the uniform distance

d(a,y)<e.

Proof. We may suppose that Mn and Nv are C°° manifolds [6,

p. 41]. By the Whitney Embedding Theorem Np has a complete

Riemannian metric g, and we may as well suppose that its given dis-

tance function d is that induced by g [5, p. 166, (3.5)].

Let Y be any compact set in M"; we first prove the lemma for

Rk(f) replaced by Yr\Rk(f). Let p. = d(a(A), /(Ff\Z?t (/))), and let
V= jiG-V': d(x, a(A)) <¡x/2}. We may suppose that e</x/2. Since

V is compact [5, p. 172], there exists v, Q<v<e, such that for each

zG V the open ball U(z, v) with center 2 and radius v is that given by

[5, p. 149, (8.7)]. There exists an open neighborhood IF of A such

thatF^(2anda(F)CF.
We will define a map ß:Q-+Np such that d(a, ß) < v and

ß(<2)n/( YC\Rk(j)) = 0. The manifold Np has a triangulation induced

by the differential structure [6, p. 101, (10.6)]; let 5: Q-*Np be a

simplicial approximation to a with d(a, 8) <v/2. Letr¿(¿= 1,2, ■ • • ,5)

be the (open) simplices of the polyhedron h(Q), in order of increasing

dimension.

If / is the identity diffeomorphism on Np, there is ([lO, p. 26]

and Remark 2) a Cr diffeomorphism A of Np onto itself such that the

uniform distance d(A, I) <v/é and/ is transverse regular [lO, p. 22]

on A~x(Ti). Since/ has rank at least p—dim(Ti) ( = p) at each point

of ^(A-^Ti)) (it may be empty), and k + 1 á p - dim Q,

A~1(Ti)r\f(Rk(f)) = 0. Since a Cr diffeomorphism may be approx-

imated by a C00 diffeomorphism ([6, p. 39, (4.5)]; the/i in (4.3) and

(4.5) may be chosen to approximate/), there is a C° diffeomorphism

B such that d(B, I)<v/4: and B-^T^n^Yl^R^f)) = 0. Let
*i = B-\

We continue by induction. Suppose that a C°° diffeomorphism SP,-

of Np onto itself has been defined such that

(?,-) d(?i, I) < (2-1 - 2-'--> and 4>Y Ú Ty) C\f(Y C\ Rk(f)) = 0.

Choose £ such that 0<£<2_i_iV and (since U^_x Ty is compact)

i< d(*i(Ùj^,f(Yr\Rk(f))y

As above, there is a Cr diffeomorphism A of Np onto itself such that

d(A, I) <£ and/ is transverse regular on ^4_1(^,,(r,+i)). Again
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A-^^Ti+i)) n/(FH Rk(f)) = 0,

and we may suppose that A is Cx. Let ^i+i=A~1^fi; ^¿+1 satisfies

condition tyi+i. The map ^=^,5 satisfies the desired conditions:

d(a, ß) <v and ß(Q)i\f(YC\Rk(f)) =0.
For each xG£/, ß(x)G V(a(x), v). Let t be the continuous real

valued function defined on Q by

t(x) = d(x, A)[d(x, A) + d(x, Q - W)\~\

For each x(E.W, let y(x) be the (unique) point on the geodesic join-

ing a(x) to ß(x) in U(a(x), v) [5, p. 166, Theorem 3.6] such that

t(x) = d(a(x),y(x))[d(a(x),ß(x))]-1;

for each x^Q—W, let 7(x)=ß(x). It follows from the proof of [5,

p. 150, Lemma 2] that 7: Q—*N" is continuous (if <fr is the diffeo-

morphism of that lemma, then 7(x) =exp(i(x) •dy1(a(x), ß(x))),

where • is scalar multiplication in Ep). Since t = 0 on A, 7|A = a|A;

since y\(Q-W)=ß\(Q~W), y(Q-W)i\f(Y^Rk(f)) =0. Since
y(x)E.U(a(x), v) for each xGH7, and v<t<¡x/2, d(a(x), y(x))<¡x/2

for each x£lW; and since a(W) G V, d(a(x), a(A)) <¡x/2 also. It fol-

lows that y(W)r\f(YC\Rk(f)) —0. This completes the proof in case

Rk(f) is replaced by Y(~\Rk(f), where Fis any compact subset of M".

The manifold Mn = (J*=i Y¡, where F,CF3+i and Y¡ is compact.

Define inductively a sequence of maps y¡: Q-^Np(y0 = a) such that

d(yj(Q),f(y¡r\Rk(f)))>Q

(call it 7?y), 7y|A = 7,_i|A, and d(y¡, 7y_i) < 2_íf, where

f<min(e, ijf) (t = l, 2, • • • , j — 1; j = l, 2, • • • )■ Since Ap is a com-

plete metric space, the limit of the y¡ exists, call it 7; it is the desired

map.   To   prove   that  7(C) C\ f(Rk(f)) = 0,   one   observes   that

y(Q)^f(Y}r\Rk(f)) = 0 (7=1,2, • • • )•
Theorem 1 is an easy consequence of Lemma 3 [3, p. 421].

The following statement was originally proved by the author [2,

p. 88, (1.3)] under the hypothesis C", and then by Sard [8, §5,

Theorem 2 ] under the present hypothesis.

Proposition 4. If M" and Np are CmB*l:n-k-1) manifolds, and f: Mn

->Np is CmM("~*'1), then dim(f(Rk(f))) =fc. In particular, if Mn and

Nn are C1 manifolds andf: Mn->Nn is C\ then dim(/(Mn)) =«.

We now observe that this theorem can also be obtained from

Thorn's theorem [10, p. 26].

Proof. We may suppose that Np = Ep, and prove that

dim(/(FnP*(/))) g&, where Fis any compact subset of Mn. Suppose
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the contrary, i.e., dim (f(YC\Rk(f))) ^Jfe + 1. There exists a compact

subset C of /( Yi\Rk(f)) such that the homomorphism

i*: H«(f(Yr\ Rk(f));Z) -» H\C; Z)

(of the Cech cohomology groups with integer coefficients) induced by

inclusion is not onto [4, p. 151]. The Alexander Duality Theorem [l,

p. 52] applied separately to f(YC\Rk(f)) and C yields a homomor-

phism

>: Hv-k.i(Ep -f(YC\ Rk(f)) ; Z) -» Hp.k.i(Ep - C; Z)

(of the Cech homology groups with compact support—augmented in

dimension zero) which is also not onto. Moreover/* is induced by in-

clusion. (The author is grateful to F. Raymond for verifying this fact;

cf. also [7, §5].)

Let 2 be a polyhedral cycle of Ep — C whose homology class y is

not in the range of /*, and let Y be the carrier of 2. Applications of

[lO, p. 26] as in Lemma 3 yield a cycle yG7 with carrier ^4_1(r)

disjoint from f(Yr\Rk(f)). Thus 7 is in the range of/* and a contra-

diction results.

There is a shorter and more natural proof by induction using

Thorn's theorem and the inductive definition of dimension; unfor-

tunately it requires the hypothesis C".
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