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1. Introduction. The purpose of this short paper is to discuss an

iterative method of order p ^ 2 for inversion of nonsingular matrices

and bounded linear operators in finite- and infinite-dimensional Ba-

nach and Hubert spaces. Here we extend as well as unify the results of

a number of authors [l], [2], [3], [4], [5], [ô], [ll]. The method is

essentially the hyper-power method of order p¡¿2 considered by

John [5] for matrices and by Altman [2] for operators. When p = 2

the method reduces to the procedure first suggested for matrices by

Schulz [il] and later discussed by Hotelling [6] and Ansorge [3] and

recently by Duck [4] and Albrecht [l]. The convergence is proved

here under a condition which is weaker than the one assumed by

Altman [2 ] and the error estimates derived here are better than the

estimates derived in [2]. Furthermore, we show the relationship that

exists among these various estimates. At the end, using the results

concerning the K-o.d. matrices and operators derived by the author

in [8], [lO] we show how to choose the initial approximation to the

inverse of a given matrix or operator so that the convergence condi-

tion is satisfied. This gives the answer to the practically difficult

problem pointed out by Newman [7] for the class of matrices and

operators considered in the last section of this paper.

2. The method and the error estimates. Let B denote a Banach

space with the norm | |, J an identity mapping of B, and R(A) the

range space of a linear bounded operator A defined on B which, in

what follows, we shall assume to be continuously\invertible, i.e., A

has a bounded inverse A~l defined on R(A) =B. We say that a given

linear bounded operator Xo satisfies a 8(T0)-condition if the spectrum

S (To) of the operator T0 = I — XoA (i.e., the set of all complex numbers

X for which the operator (XI—To) is not continuously in vertible) lies

in the interior of the unit circle centered at zero. If p is a positive

integer with p^2, then starting with X0 we construct a sequence Xn

of approximations to the inverse A"x of a given continuously inverti-

ble operator A by the following procedure: If Xn is the iterant con-

structed at the nth step of the process, then the succeeding iterant
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Xn+i is determined by

(1) Xn = il + Tn + Tn + ■ ■ ■ + Tl   )Xn,

(2) -An+l = Xn -f- TnXn,

where F„ is defined by

(3) Tn = I - XnA,       n = 0, 1, 2, • • • .

It follows from (2) that

(4) Tn+1 = I - Xn+iA = I - XnA - TnXnA = F„(/ - XnA).

On the other hand, in view of the identity,

(5) (/ + C + • • • + Cr)(/ - C) = / - C+1

valid for any linear bounded operator C in B, we obtain from (1)

(6) / - XnA = t7\

This and (4) imply that {-XVn} determined by (l)-(2) is such that

(7) Fn+i = Tn,       n = 0, 1, 2, • • • , n, • ■ ■ .

Consequently, the process (l)-(2) is of order p and is essentially the

hyperpower method studied in [2].

Theorem 1. Let the initial approximation Xo satisfy the S(Fo)-

condition. Then the sequence of successive approximations {Xn+i} de-

termined by (l)-(2) converges in the operator norm to A~x and there

exists an integer r>0 such that \Tn\ < 1 for all n^r and the error esti-

mate |£n+i| = |^4_1 — Xn+i\ for n^r is given by

Tn+iXn+i I
(8) | A-1 - Xn+i |  ^

1 -    Tnn+l\

If instead of 5(F0) -condition we assume the stronger condition

(9) |F„|  =  \l- XoA\  < 1,

then in addition to (8) the following, though less precise but more prac-

tical, three error estimates are valid.

I T I
(10) | A-i - Xn+i|  ^      '    ■"'    ■  I *»+, -Xn\,

!   n I

i III-* n-X-n

(11) | A'1- Xn+i\  ^  | Tn\*-i
1 -    F„
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(12) \A-i-Xn+i\^\To\pn+1-^-r,

whose degree of precision decreases in the given order.

Proof. To prove the convergence of Xn+i to A"1 note that since Xa

satisfies the 5(7V)-condition the spectral radius r(T0) = sup7ej(r0) |x|

of To^I — XoA is less than 1. On the other hand it is known [12] that

r(To) =limm (| T^\)llm and that for every positive integer m

(13) r(T0)ï(\T;\)llm.

Since I r™| are positive numbers and r(To) <1, the radical test for

convergence of an infinite series of numbers implies that the series

]Cm-o \lo\ converges. This shows that | J^*| —s-0, as m—><x>, and

hence, in view of (7) and the fact that

-1 p»+i    _i

A     — Xn+i = To     A    ,

proves the convergence of {A^n+i} to A^1 in the operator norm.

To obtain the estimate (8) we first note that since | T^\—rO, as

m—>oo, there must exist an integer r>0 such that

(14) I TV I   = JVT1|   < 1

whence, since Tr+i= T? for any integer ¿=§0, we see that

(15) I Tr+i\   ̂   I 7VK< 1,

i.e., I 7V.I <1 for every n^r. Put En+i = A~l — Xn+i and consider the

equality

J ¿Vu — Tn+iEn+i] = Xn+iA (A-1 — Xn+i)

.... — (I — X„+iA)Xn+i
(16)

= 7',i+iXn+i.

Since I 7V.+i| <1, (16) and the properties of the norm yield the in-

equality

J 1   —    I   7V+l I   }   I  En+l \    ̂     I  £»+1  —   Tn+lEn+l \    =    |   7'n+lX„+i |

from which we derive the estimate (8).

To prove the other assertions of Theorem 1 let us first observe that,

in view of (13) with m = l, the condition (9) implies the 5(r0)-condi-

tion of Xo so that in this case the first part of Theorem 1 remains

valid for every n. To obtain (9) from (8) note that, by virtue of (7),

(1), and (2), a simple manipulation shows that



896 W. V. PETRYSHYN [October

T„+iXn+i = T„iTn   An+i)

= F„{ (/ + Tn + ■ ■ ■ + Ff' + F^_1)Zn+i

- (/ + r, + • • • + Tpn~)xn+i}

= Tn{iI+Tn+ ■ ■ ■ + Tvr)xn+i

-iI+Tn+ ■ ■ ■ + TV)iXn + TnXn)}

- Tn{i + Tn + ■ ■ ■ + rr'KXn+i - xn).

This and the properties of the operator norm imply that

\Tn+iXn+i\

Ú  | Tn | {1 + | Tn |  + • • • + | F„ I*-1} | Xn+i - Xn | .

On the other hand, since | F„+i| = | TZ\ ^ | F„| p, we have

i-|r«|*i-|r.|.

= (i - I r.| )(i + | t„\ + ■ ■ ■ + | r.,1*-1).

Furthermore, in view of (7), the stronger condition (9) implies that

| F„| <1 for every positive integer n. Thus, using this and (17) and

(18), we derive from (8) the estimate (10):

I I Tn—lXn—l in i _    i
(10.)   U-._^|sL__Ls_^_|jr„_;f.|.

The estimate (11) follows immediately from (10). In fact, by (1)

and (2), \Xn+i-Xn\ = | T^X»] á | Tn\p-2\ TnXn\ so that, by virtue

of (10o), we have for each n the inequality

|  rm+iXn+i| [  Tn | I Xn+i - An I || I   TnX„ \

1-| Fn+i| 1- \T„\ '      '      1 -  |F„|

from which (11) follows.

The estimate (12) is then derived from (11) or (19) since by mathe-

matical induction we obtain from (19) the inequality

| rn+iXn+i |       I Tn\ \Xn+i - X„\  < |     ,   x   I Tnxn I

i- ir^i -      i- \Tn\ ' i- |r,|

(20) Û | F„|^| F„_i|^-r-|á ■ • •
l - | 1 «_i I

1 FoXj
{|fb||f„_i| ...|r.|| p-i

1 -     Fo
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Since Tn-j=T%n ' lorj = 0, 1, • • ■ , n; p~^2, and

/ 1 1 \      p»+l - 1
pn + pn-1 +   .  .  . + p + I  m pn     1  + _ +   .   .   . + _\ = £-

\ p pnJ p -   1

we have the equality

{ | 7V| | 7V_i|   • • • | To\ j-1 = { | T*\<*n+rl+- ■ -HH-»}^

=  iT/oK1-».

Hence, using the last equality, we derive from (20) the estimate (12)

and the fact that the degree of precision of the estimates for the

hyperpower method (l)-(2) decreases as we go from (8) to (12) in

the given order. Thus, the proof of Theorem 1 is complete.

Let us observe that when B is a finite-dimensional normed linear

vector space, then the continuously in vertible operator A is in this

case simply a nonsingular matrix A = (ay) and, since in this case the

spectrum 8(T0) of the matrix T0 = I—X0A consists only of eigen-

values of To, the 5(To)-condition simply means that the eigenvalues

of TV) are of modulus less than 1. Furthermore, as is well known, this

condition is not only sufficient but also necessary for the matrix To

to be convergent. Thus for matrices of finite order we have the follow-

ing result

Corollary 1. If B = BN is a normed linear vector space of dimension

N with norm | | and A = (ai}), 1 -£«', j ,§ N, is a nonsingular matrix in

Bn, then the sequence of itérants Xn+i determined by

(lo) Xn  =   (I +   Tn +   ■   ■   ■   +   Tr)Xn,

(2o) Xn+l  =   Xn +   TnXn

converges in the matrix norm1 to A'1 if and only if Xo is so chosen that

the eigenvalues of the matrix T0 = I — X0A are of modulus less than 1.

In case of convergence we have the error estimate analogous to (8). //

in addition we assume that Xo satisfies the condition (9), then the error

estimates (10)—(12) are also valid.

Special cases, (i) If p = 2, then X„ = Xn lor each n and (l)-(2) re-

duces in this case to the quadratically convergent method suggested

for finite matrices by Schulz [il]

1 If X* — (X\, • ■ -, Xn) is the transpose of any column vector X in B, then for the

norm \X we may take, for example, \X\ =|A"|. = Maxis,-s¡v|Xi\ or |x| s|x|i

= 2Z» = i -^»1 or some other norm |X|. The corresponding matrix norms would be

|^4| =\A «, = max<2Zí^i \&a\ or |^4| =|.4| i — maxi^Lf-i \Ay\ or some other norm

| A | corresponding to | X\.
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(i) Xn+1 - Xn + (/ - XnA)Xn = X„(2 - AXn).

Theorem 1 establishes the convergence of (i) and determines for it

the four error estimates both for matrices and operators. Let us note

that when A is a matrix and X0 is such that condition (9) is satisfied

the estimates (10) and (11) for the method (i) were derived by Duck

[4] under the assumption that Xn is nonsingular for each n and later

by Albrecht [l ] without this assumption. The estimate (12) for (i) was

derived by Hotelling [ó] (see also Ansorge [3], John [5], and New-

man [7]).

(ii) If p = 3, then Xn = i2-XnA)Xn and Xn+i = Xn+TnXn or

equivalently the sequence {Xn+i} is determined by the cubically

convergent method

(ii) Xn+i = {3 - 3XnA + iXnA)2}Xn.

For matrices satisfying the condition (9) the error estimate (11) was

derived in this case by Albrecht [l] who also showed its connection

with the improved Newton's method. In case of operators the method

(ii) was investigated by Altman [2] who, imposing the condition (9),

proved its convergence with the error estimate (12) and showed that

among all the hyperpower methods the method (ii) is best in the sense

that the same number of multiplications gives a better accuracy in

terms of the error estimate (12) for p = 3 than for any other p è 2.

3. Inversion of i£-p.d. matrices and operators. We shall now apply

Theorem 1 to the problem of inverting a nonsingular matrix or a con-

tinuously invertible operator of a K-o.d. type in a finite- or infinite-

dimensional Hilbert space H with the inner product ( , ) and norm

INI-
Let A be a linear bounded operator in H of the form

(21) A = D + Q,

where D is iü-symmetric and i£-positive definite (FT-p.d.) and Q is

ii-symmetric,2 i.e., there is a positive definite Hermitian operator K

and some positive constant i?i>0 such that for all u and v'm H

(22) iDu, Kv) = iKu, Dv),        (Qu, Kv) = {Ku, Qv),

(23) iDu, Ku) ^ v\iu, u).

Note that since D and K are bounded operators in H there is a con-

stant ??2>0 such that

2 For various properties and general theory of K-p.d. matrices of finite order and

bounded and unbounded operators see the author's papers [8], [9], [lo].
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(24) (Du, Ku) S -n\(u, u).

It was already pointed out in the introduction that the main dis-

advantage of the method (l)-(2) is that it is a very difficult practical

problem to find the initial approximation X0 to A'1 which satisfies

the §(TV)-condition or the stronger condition (9). Recently, Altman

[2] showed that if A is a self-adjoint and positive definite operator

in H such that

(25) m(u, u) £j (Au, u) ^ M(u, u),       u E H,

where 0<m<M and m, M are the smallest and largest eigenvalues of

A, respectively, then the initial approximation X0 defined by X0 = al

satisfies the condition (9) if a is any constant satisfying the condition

0<a<2/M.
Using our results in [8], [lO] we shall show here how to choose XB

so that the 8(T0)-condition is satisfied.

Indeed, let X0 be a given initial approximation to A^1 and compute

the successive approximations {^„+1} by the scheme (l)-(2). Then

the following theorem is valid.

Theorem 2. (a) Let D be K-symmetric and K-p.d., Q be K-sym-

metric, and G = D — Q be K-p.d. If the operator A=D + Q is K-p.d.
and the initial approximation X0 to A~l is chosen to be X0 = D~1, then

the sequence Xn+i determined by (l)-(2) converges in the operator norm

to the inverse A~l. Furthermore, there is an integer r>0 such that for

n^r the error estimate is given by the formula

(81) \\A->  -  Xn+l\\   j
1   -  \\Tn+l\\

(b) If in addition to the above condition on G and A we assume that

(9i) riD-iQX—,

then the estimates (10)—(12) remain also valid.

Proof. The proof of Theorem 2 follows from Theorem 1 and the

Main Theorem in [8]. Let us first observe that the conditions satis-

fied by D imply that it is continuously invertible so that the choice

Xo = D~1 is always possible. Furthermore, A is .K-symmetric and

since, by hypothesis, A is also 7£-p.d. it follows that A is continuously

invertible. If we now take X0 = D-\ then T0 = I-D~lA = -D~lQ

and hence by Theorem 1, it is sufficient to show that r(T0) =r(D~lQ)
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< 1. This, however, follows as a special case of the Main Theorem [8]

according to which (under present conditions on D, Q, and G)

r(F>-1<2) <1 if and only if A is iC-p.d.

To prove the second part of Theorem 2 let us introduce a new inner

product and norm in H by

(26) [m, v] = iDu, Kv),        | u |2 = [u, u],       u,vE 3,

and denote the resulting space by H0. Since D is iT-symmetric and K-

p.d. the metric (26) is well defined and, in view of (23) and (24), the

norms || || and | | are equivalent. It is easy to see that Fo= — D~1Q,

considered as an operator in H0, is Hermitian for, indeed, we have

[Ton, v] - iDTou, Kv) = - iQu, Kv) = - (Ku, Qv)

= (Du, KiD-iQy) = [u, Tov]

for all u and v in H0. Hence, as is known [l2], r(F0) =riD~lQ) is given

by the ü0-norm of To, i.e.,

(27) r(F„) =  | To |   =  | D-*Q \ .

Consequently, the definition of a norm of a bounded operator, the

relation (27), and the inequalities (23) and (24) imply that

(28) (^)||F„||gr(F„)á(^)||Fo||

whence, in view of (9i), we derive the condition (9). Thus, the rest

of Theorem 2 follows from Theorem 1.

Remark 1. Suppose that A is a self-adjoint operator in H which

satisfies the condition (25) and a>0. If we take F> = a_1, Q = A —a-1,

and i£ = 7, then (23) and (24) are satisfied with iji=n\ = a~l and

A=D + Q and G = D-Q = 2ar1-A. This shows that, by virtue of

(25), G is positive definite if and only if a satisfies the condition

0<a<2/M. Furthermore, since r¡i=r)i, (28) reduces to the equality

(280 r(r0) -  | r„|  =||Foil.

Hence, under the hypotheses of Theorem 2(a), the Main Theorem in

[8] applied to this case implies the validity of (9i) and thus the cor-

responding result of Altman [2] follows as a very special case of

Theorem 2.

If H is a finite-dimensional Hubert space, i.e., a unitary finite-

dimensional vector space, then the following corollary to Theorem 2

is valid.
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Corollary 2. If H is a finite-dimensional unitary vector space, D

and Q are K-symmetric matrices and D is also K-p.d., and Xo = D~1,

then ¡Z„+ij determined by the hyperpower method (l)-(2) converges to

the inverse of A=D+Q if and only if A and G=D — Q are K-p.d.
Furthermore, the error estimate (81) is also valid here for n^r>0. If

additionally the eigenvalues of the matrix D~lQ satisfies the condition

analogous to (9i), then the error estimates (10)—(12) remain valid.

At the end let us remark that, as was shown in [lO], the class of

X-symmetric and K-p.d. matrices is equivalent to the class of matri-

ces having positive eigenvalues and a complete set of corresponding

eigenvalues or a class of weakly positive matrices or a class of matrices

of the form HiH2, where Hi and H2 are two Hermitian and positive

definite matrices.
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