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1. Introduction. Witt's theorem is concerned with the extension of

an isometry between subspaces to an isometry on the whole space.

The most general form of Witt's theorem is Theorem 1.2.1 in Wall

[3]. Theorem 1 of this paper extends Theorem 1.2.1 and is identical

to it in case the characteristic of the division ring is not 2. Theorem 2

is a variant of Theorem 1. Theorems 1 and 2 are concerned with

sesquilinear forms. Theorems 3 and 4 are concerned with bilinear

forms on a finite dimensional vector space over a field of character-

istic 2. Theorem 3 gives necessary and sufficient conditions for two

(possibly degenerate) forms to be equivalent. Theorem 4 gives neces-

sary and sufficient conditions for two subspaces to be equivalent.

The original results of this paper were based on results in Dieu-

donné [l]. However, the referee kindly pointed out that the proofs

can be simplified and some of the results generalized by using results

in Wall [3]. In particular he pointed out that Wall's proof is valid

for the results stated in Theorem 1 as the restrictions contained in

Theorem 1.2.1, are not necessary. He also suggested the variant on

Theorem 1 which is Theorem 2. The proof of Theorem 4 has been

considerably simplified by the use of Theorem 2. I wish to thank the

referee for these suggestions as it allows me to present these results

in a more elegant and simplified form.

I also wish to thank Professor A. M. Gleason for stimulating dis-

cussions and advice, and Mr. E. Prange for discussions and for point-

ing out to me a proof of a weaker version of Theorem 1.

2. Notation. Let F be a vector space of possibly infinite dimension

over a division ring D with a fixed involutory anti-automorphism /,

that is, a one-to-one mapping a—>aJ of D onto itself such that

(a-\-ß)J = aJ-\-ßJ, (aß)J = ßJctJ, and aJ =a. An Hermitian (skew-

Hermitian) sesquilinear form on F is a mapping /: VX V—>D such

that f(x, y) is linear in x for each fixed y and f(y, x) =f(x, y)J (f(y, x)

= —f(x, y)J). If the characteristic of D is two, the distinction between

Hermitian and skew-Hermitian forms disappears.

Two forms /1 and /2 are called equivalent if there is a linear trans-
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formation a of V\ onto V2 with the property that

h(x,y) =M<r(x),<r(y))

for all x and y in V~i ; and a is called an isometry.

If WQ V, WL is the set of all y in F such that/(x, y) =0 for all x

in W.
A form / is called nondegenerate if V1 — 0. Otherwise / is called

degenerate.

3. Witt's theorem. Let / be a nondegenerate Hermitian or skew-

Hermitian form on V. The set of all isometries of V onto itself form

the unitary group U(f). If <r is in U(f) and the range of I — <t is finite

dimensional, then a is said to be finite dimensional. The finite dimen-

sional elements of U(f) form a normal subgroup of U^(f).

If x is in V, we call x trace-valued if f(x, x) =\ + ekJ, e— +1, for

some X in D. By Lemma 1.2.1 in [3] the set of trace-valued vectors in

F forms a subspace VT of V. If the characteristic of D is not 2, VT=V.

The most general form of Witt's theorem is Wall's Theorem 1.2.1

[3] which we now state.

Theorem 1.2.1 (Witt). Let Wi, Wi be finite dimensional subspaces

of VT such that ÍFin(FT)x = IF2n(Fr)-L= {o}. Then every isometry a

of Wi onto Wi can be extended to an element of U$(f).

The following is an extension of the preceding theorem and a gen-

eralization of the characteristic two case in [2].

Theorem 1 (Witt). Let Wi, Wi be finite dimensional subspaces of

V such that JFin(Fr)± = TF2n(FT)"L. PAe« every isometry of Wi onto

Wi which is the identity on Wir\(VT)x can be extended to an element of

U,(f).

Proof. By Lemma 1.2.2, Corollary [3], every element in U(f)

leaves (VT)L pointwise invariant. Hence it is enough to be able to ex-

tend the isometry to an element of U$(f) under the assumption that

WiC\ ( V*)L = Wi(~\ ( Vr)x = {0}. This can be proved by following Wall's

proof of Theorem 1.2.1 and deleting the restriction that Wi, WiQVT.

This restriction is nowhere needed in the proof.    Q.E.D.

If Wi and Wi are subspaces of V and Wi is isometric to Wi by an

isometry in U$(f) we will call Wi and IF2 equivalent. Theorem 2 is a

variant of Theorem 1.

Theorem 2. If Wi and Wi are finite dimensional subspaces of V,

then Wi is equivalent to Wt if, and only if, (1) Wi(~\(VT)L = TF2n(Fr)x

and (2) Wi is isometric to Wi.
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Proof. The first condition is necessary by Lemma 1.2.2, Corollary

in [3]. To prove the sufficiency we need only show that there is an

isometry co sending IFionto W2 which sends WiC\(Vr)L onto WiC\(VT)L.

Then co would send a complement of Wir\(VT)L in Wi onto a comple-

ment of WiC\(Vr)i- in W2. Hence by the proof of Theorem 1, there

exists a a in U^(f) sending Wi onto W2.

To establish the existence of co, let p be an isometry of Wi onto W2

such that the subspace A={x|x is in Wir\(VT)L and p(x) is in

WiC\( VT)L} have as large a dimension as possible. We assert X equals

Wir\(VT)x. We will prove this by contradiction. Suppose that X

does not equal WiC\(VT)x. Then there is an a in WiC\(VT)L with p(a)

not in Wir\(VT)L. Hence it is possible to find an a such that in addi-

tion to aÇLWir\(VT)L, p(a)éiW2r\(VT)x, we have a=p(b) where

&GJF1, b(¡.Wir\(VT)L. Let Y' be the subspace generated by a and b.

Then dim F' = 2 and X(~\ F' = 0. Hence we can choose a complement

Y of Y' in Wi such that XQY.

Now we define a new isometry \j/ of Wi onto Wi as follows, \¡/(x)

= p(x) for x in Y. \{/(a) =a. \p(b) =p(a). If 4/ is indeed an isometry we

will have our contradiction. Clearly \p is one-to-one so we have to

verify that f(\p(x), a) =/(x, a) and f(\}/(x), p(a))=f(x, b) for all x in

W\. By Lemma 1.2.2, Corollary [3], p(x)—x is in FT for all x in F

so that f(p(x), a)=/(x, a) for all x in PFi. If x is in F, f(ip(x), a)

=/(p(ï), a)=f(x, a). It can be shown that/(^(&), a)=f(b, a) also,

so that/(i/'(x), a) =/(x, a) for all x in Wi. For x in F, f(\j/(x), p(a))

=f(p(x), p(a)) =f(x, a) =/(p(x), a) =f(p(x), p(b)) =/(x, 6). It can also

be shown that f(\p(a), p(a)) =f(a, b), so that/(^(x), p(a)) =f(x, b) for

all x in Wi.    Q.E.D.
A subspace W C V is called isotropic if/(x, y) = 0 for all x and y in IF.

Corollary 2.1. If Wi and W2 are two isotropic subspaces of V such

that Wir\(VrY = W2r\(VT)x, Wi and W2 are equivalent.

4. Invariants. In this section we assume that V is finite dimen-

sional, J is the identity, and D is a field of characteristic two. Under

these assumptions / is a nondegenerate symmetric bilinear form, and

VT is the set of all x such that/(x, x) =0. Let »i = dim V.

Since X—>X2 is an automorphism of D into D2, the mapping 6:x

—>/(x, x) is a semi-linear transformation of V into the vector space

D over the field D2. Let W=d(V). Clearly W is a subspace of D

over D2. Vr equals ^(O). Let U=d((Vr)L) and let Z = dim U.

Corollary 2.2. Any isotropic space is contained in an isotropic space

of maximal dimension v. In addition v = (m — l)/2.
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Proof. Given any isotropic space U, we can find a subspace U' of

a maximal isotropic space AT such that Ur\(VT)1= UT\(VT)-L. Hence

there is a a in U(f) such that a( U) = U' and U is thus contained in

the maximal isotropic space a~1(M).

It can be shown that the direct sum of a maximal isotropic space

in a complement of Vrr\(VT)L in VT and VTi^(VT)± is a maximal iso-

tropic subspace of V. Hence,

dim V - dim V C\ (VT)L
v = dim Vr C\ (Fr)x +-—L-

2
dim Vr + dim VT i\ (V7)1

2

m - (dim(Fr)x - dim VT\ (F')x)

m — I

2

On p. 51 of [3], Wall has shown that (f(x, x),f(y, y))=f(x, y) for
x and y in ( V7)1 uniquely defines a function y = (X, p) of the variables

X, fi in U. Lemma 3.4.2 of [3] states that two nondegenerate forms

are equivalent if, and only if, they have the same W, U, and 7. If /

is a degenerate form let d(f) =dim FHFX. Then it follows that two

(possibly degenerate) forms are equivalent if, and only if, they have

the same W, U, y, and d.

If /1 and /2 are two forms on V, let F[ denote the FT for /1 and Y\

denote the Fr for /2.

Theorem 3. Two (possibly degenerate) forms fi andf2 are equivalent

if, and only if,
(1) {/i(x, x)} = {/2(x, x)} and

(2) (F[)x is isometric to (F¡)x.

Proof. By the above discussion on W, U, y, and d, it is enough

to show that if two forms/i and/2 satisfy eonditions (1) and (2) they

have the same W, U, y, and d.

Clearly if/i and/2 satisfy condition (1) they have the same W.

Also if /i and /2 satisfy condition (2) it is not hard to see that they

must have the same U and y.

To see that /i and /2 have the same d note that

d(fi) = dim F- + dim(F-)x - dim F

= m - dim W + dim(Fj)x - m i = 1, 2

= dim(F¿)x - dim W.    Q.E.D.
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In [2] it was shown that any two nondegenerate forms/1 and/2 are

equivalent under the condition that fi(x, x) and /2(x, x) both take

their values in a perfect subfield of D. The next corollary shows that

this is true for any two nondegenerate forms whose W's are the same

one-dimensional subspace of D.

Corollary 3.1. If fi andf2 are nondegenerate forms, each with a one-

dimensional W, then /1 is equivalent to /2 if, and only if, condition (1)

holds.

Proof. Since dim(F[)-L=dim W=dim(V¡)1-, dim(FÍ)1 = dim(F¡)x

= 1. Hence (VI)1- is isometric to (VI)1 if, and only if, either both are

isotropic or both are not isotropic. It is known (p. 50 of [3]) that

dimd((Vl)L)=m(2) and dim 6((V¡)1)=m(2) so that (VI)1 and (VI)1
will be isotropic when m is even, not isotropic when m is odd.

Remark. If/1 and/2 are (possibly degenerate) forms, each with a

one-dimensional W, then/i is equivalent to/2 if, and only if condition

(1) holds and d(/i)=d(/2).

Theorem 4. Let Wi, W2 be subspaces of V. Then Wi is equivalent

to W2 if, and only if:

(1) dim IFi = dim W2, and
(2) JF1n(F0x = IF2n(F')J-,a«á

(3) Wtr\(V*)1 = Wir\(VT)x, and

(4) (Win V*)Lr\Wi is isometric to (W2C\F')xrW2.

Proof. Conditions (2) and (3) are necessary by Lemma 1.2.2,

Corollary [3]. Conditions (1) and (4) are obviously necessary.

To prove the sufficiency we will first show that conditions (1), (3),

and (4) imply that Wi is isometric to Wt. Then the theorem follows

from condition (2) and Theorem 2. Theorem 3 shows that Wi and IF2

are isometric. This follows since condition (4) gives us condition (2)

in Theorem 3 immediately. Condition (3) is equivalent to Wi-\-VT

= IF2+ VT which implies condition (1) in Theorem 3.

The next corollary shows that these conditions are somewhat sim-

pler for the situation where dim W=\ and is a generalization of

Corollary 3.2 in [2].

Corollary 4.1. If dim W—l, then two subspaces Wi and Wi of V

are equivalent if, and only if:

(1) dim IFi = dim W2, and

(2) dim WiC\(V*)1=dim WXV')\ awd
(3) dim WW = dim WtC\Vr, and

(4) dim WWr = dim WWX.



i96j] INVARIANTS OF A VECTOR SUBSPACE OF A VECTOR SPACE 1067

Proof. These conditions are necessary by Theorem 4. The suffi-

ciency is proved in a fashion similar to the proof of Theorem 4.

By (1) and (3) dim d(Wi)=dim 6(W2). Since dim W=l, either

dim 6(Wi) and dim 6(Wi) are both 1 or both 0. Since condition (3)

implies Wi+VT=Wi+VT, if both dimensions are 1, Wi and W2 are

isometric by the Remark to Corollary 3.1. In case both dimensions

are 0, conditions (1) and (4) are the known conditions for two sym-

plectic spaces to be isometric.

Noting that condition (2) implies WiC\(VT)i = WXFr)x, Theo-

rem 2 tells us that Wi and TF2 are equivalent.

Remark. If (Fr)x = 0, Theorems 3 and 4 are known [l] theorems

for nondegenerate, alternating forms on spaces over fields of any

characteristic.
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