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1. Given a nonconstant real continuous function p(t), —l^t^l,

we form, for n = l, 2, • • • , the matrix pn whose (i, j)th element is

p((i—j)/n), i = 0, ■ ■ ■ , n,j = Q, • ■ ■ , n. The purpose of this note is

to estimate the determinants ( | pn | ) of pn lor large n for some specific

functions p. We prove the following theorem.

Theorem. If p(t)=p(—t) has a uniformly bounded second deriva-

tive, 0<i<l, and satisfies the following additional assumptions:

(i) p"(t)^0,0<t<l,
(ii) p'(t)^0,Q<t<l,
(iii) p(l)>0,

then

\Pn\-{2|p'(0+)|/w}\

Here, sequences a„ and bn, n = l, 2, ■ ■ • of positive numbers are

said to be of the same order of growth, a„~~&,„ if an = 0(bn) and

bn = 0(an). The right-hand derivative of p at zero, p'(0+), exists and

is strictly negative as a consequence of the hypothesis. We remark

that the theorem becomes false if one drops the assumption of a uni-

formly bounded second derivative and replaces it with the assump-

tion that p be convex for O^t^l, and |p'(0+)| < ». It would seem

that the strict inequality in (iii) could be relaxed, but we have not

succeeded in doing this.

The problem of determining the order of growth of | p„ | has arisen

in some work of one of the authors on the discrimination of Gaussian

processes [3]. The application of the present results to that study is

quite direct and will appear elsewhere.

2. The method of proof is to use elementary row and column oper-

ations in order to bring the matrix into nearly unit-matrix form. In

the remainder of the proof we use some lemmas of Price [2] and

Ostrowski [l].

We subtract column j — 1 from column/ in pn, j = n, n—1, - - - , 1

and thereafter subtract row i — 1 from row i, i = n, n — 1, • • • , 1 in

this order. We obtain a symmetric matrix a = an whose general ele-

ment a.y is
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i = 1, ■ ■ ■ , n,j = l, ■ ■ ■ , n,

fk\        fk-l\
(2.2) floo = p(0),        ako = aok = p\—) —pl-)'

k = 1, ■ • ■ , n.

We denote by a' =a'n the nXn matrix obtained from a by deleting

the row i = 0 and column j = 0 from a. We next divide each of the

rows of the deleted matrix, a', by the common diagonal entry

2(p(0)—p(l/w)), obtaining the matrix b = bn whose general element

bi} is

(2.3) bij = a«/(2p(0) - 2pil/n)),    i = 1, ■ ■ ■ , n,   j = 1, ■ ■ ■ , n.

From standard theorems on determinantal manipulations we have

(2.4) |p„| =  | a. |,

(2.5) | a»' | = Í2pi0) - 2p(-)X\bn\.

From (i) and (ii) by convexity and monotonicity of p we see that

ttfi^O for i^j. It then follows that for i= 1, 2, • • • , n,

E |a«| - 2(p(0) - p(l/»))

<2'6>    "' -(>(^)-m)-"
and

X I aw| = PÍO) -P(l) ap(0) = aoo.
i*0

The hypothesis of the following lemma of Price is satisfied.

Lemma 1. If a = a,j, i = 0, ■ • ■ , n, j = 0, ■ ■ • , n,is any real matrix

for which Yjj^ilüijl ^ aa,i = Q, • ■ ■ , n, then

(2.7)    (aoo- Ê | o«|) | «'I á \a\ ¿ (a0o + ¿K|W|,

where a' is the matrix derived from a by deleting the row i = 0 and the

column j = 0.
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The lemma is only implicitly contained in [2] but the reader will

have no difficulty in extracting it (see especially formula (13) on

p. 501).
Applying (2.7) to an we obtain

(2.8) p(l) | a¿ | Ú \on\S (2p(0) - p(l)) | «.' |.

To estimate the determinant | &| in (2.3) we use the following spe-

cial case of a theorem of Ostrowski [l].

Lemma 2. If b = ba, i = l, • • • , », / = 1, • • • , n, is any real sym-
metric matrix with bu = 1 and

¿2 | hi\ Ú s g 1,       i= 1, ■ ■ ■ ,n,

then

(2.9) e'cV'(l - j)»'/*1 g  |¿| á 1,

where

(2.10) aJ=^4
«w

The left-hand inequality in (2.9) is proved in [l] even without

assuming that b is symmetric. It is necessary to assume symmetry

for the right-hand inequality which seems to be new. Furthermore,

in this case we give a simpler proof of the left-hand inequality. It is

well-known and easy to see that all the eigenvalues of b are non-nega-

tive. With 2x denoting summation over all eigenvalues of b, we have

(2.11) det ô = exp X log A Û exp £ (X - 1) = 1
x x

since ^2\\ = trace b—n. The left-hand inequality is proved sim-

ilarly, using the fact that lor s<l,\^l—s and log X ̂ X — 1 — C(X — 1)2

for an appropriate value of C.

Using (2.5) to check that the hypothesis of Lemma 2 holds we may

write (2.9) with b = bn. Here cr2 = cr^ is given by (2.10) and

'(^-'(^Mt)
.12)

Using Taylor's theorem we obtain

= sn = max < 1 —
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p(0) -p(-\= - p'(0+)/n + Oil/n2)

and this yields

(2.13) ^2p(0) - 2p(^fj ~ (2 I P'(0+) | /»)»•

Using (2.4), (2.8) then (2.5), (2.13) and (2.9) it is clear that we

need only show that as n—->°o the extreme left-hand side of (2.9) re-

mains bounded away from zero.

By a mean value theorem we have a,j = —p"idi,)/n2 where

ii-j - l)/n < 6ij < ii-j+ l)/n,       i * j.

With M=sup p" we have |ö,7| ^Af/«2(2p(0) -2p(l/w)) and it fol-

lows that

(2.14) lim sup o-l ̂  M2/+ \ p'(0+) |2.

In order to complete the proof of the theorem we need only bound

s = sn away from unity (N.B. for s near zero the extreme left-hand

side of (2.9) is not vanishingly small). If p'(l~) <0 we may proceed as

follows. The mean value theorem and the fact that \p'it) | ^ |p'(l_) |

gives easily

2 | p'(I-) |
(2.15) lim sup s„ < 1-r < L

2 | p'(0+) |

If now p'(l_)=0 the argument is more difficult. One must consider

an appropriate power, r, of the matrix b and apply Lemma 2 to br.

For a sufficiently large fixed r one shows that there is a 5 > 0, inde-

pendent of n sufficiently large, such that for all i,

(2.16) YJ\bl])\^s<l.

The details are straightforward but cumbersome and are omitted.
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