
PRIME MATRIX RINGS

R. E. JOHNSON1

If F is a ring, then an obvious way to construct subrings of (F)n,

the ring of all «X« matrices over P, is to choose additive subgroups

Fa of F such that

(1) Fi}FjkQFik,       i,j,k=*l, ••-,»,

and then form the ring

(2) R =  Ê F*«

where the ei} are the usual unit matrices. For example, we could select

« left ideals Ai, • • • , An of either P or a subring of P and then let

Fu-Aj, *,j=l, •••,«.
If P is a (skew) field and the Fq satisfying (1) are all nonzero, then

P defined by (2) is easily shown to be a prime ring. The main result

of this paper (1.3) is that if P is a right ring of quotients of Pu then

(P)„ is a right ring of quotients of P and there exists a subring A of

P and a nonzero diagonal matrix dQR such that (A)„ is a subring

of dRd~~l and F is a ring of quotients of K. This result is used to give

new proofs of the Faith-Utumi theorem [2] and of Goldie's theorem

[1].

1. Prime matrix rings. If A is a subset of a ring, then let A'

= {xG^I^^O}. If A and B are subsets of a field, then denote by
AB~l= {ab-l\ aQA, bQB' ). The notation P = S is used to show that

5 is a right ring of quotients of P; that is, that P is a subring of 5 and

a RP\R9*0 for all aQS'. It is readily seen that if P is a field and A is a

subring of P, then A = F iff AA"1 = P.

1.1. Lemma. Let F be a field and A be a subring of F for which
A A-1 = F. If B and C are nonzero right A-modules contained in F, then

BC\C9*0andBC-l = F.

Proof. For any fQF', bQB', and cQC, there exist atQA such

that b~1fc=axar1. Hence, f=(bai)(cai)~1QBC~1. We conclude that

BC~1 = F. If/=1, then 5ai = ca2 and evidently BC\C9*0.

1.2. Theorem. Let F be a field, {P,y|t, j = l, • • • , «} be a set of

Received by the editors July 30, 1964.

1 Research supported in part by NSF Grant G-24155.

1099



1100 R. E. JOHNSON [October

nonzero additive subgroups of F satisfying (1), and R be the prime ring

defined by (2). Then Rú(F)„ iff FuúF.

Proof. If R^(F)n, then for every d£.F' there exists a(ER such

that (den)a£;R'. If a= Ea>A¿, where a.yGT'jy, then daij(EiF'u and

¿Gíijí"-1 for some j. Since fg~1 = (fh)(gh)-1 for all /, gGFij and

h<EF3i, evidently FijFjCFnFñ1 for all/. Hence, T'CT'nTy and

Fn^F.
Conversely, if Fu^F then FnFj1 = F for all i and j by 1.1. Actu-

ally, fg'1 = (fh)(gh)-1 for all /G/£, gGF'a, heF'lt so that F^F? = F
for all i, j, k. Since each Fa is a right Ft^-module, the T^-module

7* = n"-i Pik is nonzero and FkFk1 = F by 1.1. Clearly each 74 is a

subring of F. Thus, R contains a subring 5 of the form

(3) 5 =  ¿ F fin
i,}-l

where the Fj are subrings of F satisfying

(4) FiFjCFi,       FièF,       i,j=í, •••,«.

To complete the proof of 1.2, we need only prove that S^(F)n.

Let a= Eo¿j'ei3'G(J^)n. with a^^O. Then there exist &¿G77 such

that a,8t)<G7', for each i. Since biF,/^ • • • r\bnF,¿¿0 by 1.1, there

exists some &G77,' such that aisb(E.F, for each i. Hence, a(bee,)

= ^2aitbei,E.S. Therefore, S^(F)n and 1.2 is proved.

It is easy to give an example showing that FiC\ • • • C\Fn might

be zero in ring 5 of (3). Thus, if D is a right Ore domain having right

field of quotients F (i.e., DD~1 = F) but D is not a left Ore domain

(i.e., D^D^F), then there exist nonzero left ideals F< of D such that

FiC\ • • • r\Fn = 0. Still, 5g(F)n if 5 is defined by (3). Although the
intersection of the Fk might be zero, the intersection of the corre-

sponding subrings of F in some isomorphic image of 5 in (F)n is

nonzero as we shall now show.

Let 5 be a subring of (F)n defined by (3) and (4) above, and let

giEFi, i = l, • • • , «. If fk = gigi • • • g*, fe = l, • • • , «, then clearly

each fkCHF¿ and d= E/¿e« nas inverse o,_1= E/í"1^« m (^)n- Let

t = dsd-1 = Ê (fiFifr^,
i.3-1

an isomorphic image of 5. Evidently T^(F)n. Since/„a/r1 =/.gi+i • • •

gndgt • • • gifT^fiFjfT1 for all aGFi, clearly

Ô fiFifT^fnFifr1.
i.i-i
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If we let A =fnFifï\ then A is a subring of F for which KA"1 = F by
1.1. Evidently (A)„CPand also (K)„^(F)n by 1.2. We have proved

the following result.

1.3. Theorem. Let F be a field, Fq be nonzero additive subgroups of

F satisfying (1), and R be the prime ring defined by (2). If Pu = F, then

there exists a subring K of F and a nonsingular diagonal matrix dQR

such that KK-1 = P and (K)núdRd~l = (F)n.

2. The annihilator ideal lattice. In order to apply the theorems of

§1 to prime rings in general, we need the following lattice-theoretic

results. Since we wish to use these results in another context [7],

we shall state them in as general terms as possible.

Let P be a ring, Lr be the lattice of right ideals of P, and Rf be

the right singular ideal of P. Thus, bQR? iff br= |xGP|Z>x = 0} is a

large right ideal; i.e., bT(~\A 9*0 for all nonzero A QLr. If Pf = 0, then

we denote the lattice of closed right ideals of P by L*. Thus, AQL*

iff A is the only essential extension of A in Lr. It is well-known that

L* is a complete complemented modular lattice.

If A is a lattice containing 0 and I, then a minimal (maximal) ele-

ment oí L—{o}(L—{l}) is called an atom (coatom). If P^=0 and

L* is atomic (i.e., every nonzero element of L* contains an atom),

then let us denote by P? the union in L, of all atoms of L*. A ring P

is called (right) stable [6] iff R? = 0, L* is atomic, and (P?)r = 0. Not

only is every prime ring (for which L* is atomic) stable, but so also

is every «X« triangular matrix ring over a right Ore domain.

Another lattice associated with a ring P is the lattice Jr of anni-

hilating right ideals of P. If P^ = 0 then JT is a subset, although not

necessarily a sublattice, of L*. However, intersections are set-theo-

retic in both lattices.

Needless to say, the corresponding left structure of a ring P is indi-

cated by replacing each "r" above by an "/".

The following lemma, due to Koh [3], is basic to the work of this

section. Our proof is a paraphrase of Koh's proof for prime rings.

2.1. Lemma. If R is a stable ring then Pf = 0.

Proof. If P,V0 and dQ(R?)', then Ad9*0 for some atom AQL*
and ad9*0 for some aQA'. Since RaC\dl9*0, xa9*0 and xad = 0 for

some xQR'. However, ar is a coatom of L* by [4, 6.9] and therefore

(xa)r = aT. This contradiction proves the lemma.

The lattices Jr and J¡ are dual isomorphic under the correspond-

ence A-+Al, AQ JT. If P is a stable ring then the lattice Ji is atomic.

Actually, let us show that if A, BQJi with AC\B9*B, then there
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exists an atom CG7i such that CCB and CC\A =0. By 2.1, L,*D7i
and there exists some nonzero 7>GL* such that D QB and Df~\A = 0.

Since R is stable, EDt^O and hence £HZ)^0 for some atom £GL*-

If dG(Ei\D)', then d' is a coatom of L* by [4, 6.9]. Therefore, dr

is a coatom of Jr and C = dH is an atom of Jj. Clearly CCLB

andCr\A=0.
If 7Í is any atom of J¡ then Br is a coatom of L* by the proof above.

Thus, if B covers 0 in J¡ then 0r = R covers Br in L*. This is a special

case of the following result.

2.2. Lemma. Let Rbe a stable ring and A, B£.Ji- Then B is a cover

of A in Ji iff Ar is a cover of Br in L*.

Proof. If Ar is a cover of Br in L*, then Ar is a cover of Br in Jr and

B is a cover of A in Ji. Conversely, if B is a cover of .4 in J¡ then there

exists an atom CÇzJi such that C(ZB and CH.4 =0. Clearly B —A \JC
in 7¡. Hence, Br = ATr\CT. Since Cr is a coatom of L* and A'<X.Cr,

evidently Ar\JCT=R in 7,*. Therefore, the intervals [Cr, R] and

[ArC\CT, Ar] are isomorphic and Ar covers ^4rnC = 5r.

The main result of this section is as follows.

2.3. Theorem. If R is a stable ring then the lattice Ji is upper semi-

modular.

Proof. Let A, 7?G/j be covers of AC\B. Then (AC\B)r covers AT

and Br in L* by 2.2. Hence, (Ar\B)r=Ar\JBr in L*. By the modular-

ity of L*, Ar and Br cover ArC\Br. Therefore, AUB [=(Arr\Br)1]

covers A and B in Ji by 2.2. This proves 2.3.

If the lattice L* has a finite dimension «, then we call « the (right)

dimension of 2? and write dim R — n.

2.4. Corollary. If Ris a stable ring such that dim R = w, ¿fee« Ji is a

complemented lattice of dimension n.

Proof. Every maximal chain in Jt has length by 2.2, and therefore

dim/¡ = «. To show that Ji is complemented, let A, 5G7j with

A(~\B = 0 and A\JB¿¿R. Then there exists an atom CG7i such that

Cr\(AVJB) =0. We claim that 4H(SUC) =0 in /¡. If this is so, then
by induction there exists some 7>G7i such that A(~\D = 0 and A^JD

— R. Hence, Ji is complemented.

If AÍ\(B\JC)9íQ, then there exists an atom £G7i such that
ECAn(BVJC). Then £H5 = 0, £0-4r, and ErDBrC\Cr. Clearly
C-UGáTLB'Hi? in I*. Hence, £r = 5rn[CrU(^n£')] = (£rnO

W^PiT^) and ErZ)Br, contrary to the fact that EC\B=Q. Hence,

AC\(B\JC)=Q.
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The lattice Ji of a stable ring P is not necessarily modular, as the

following example shows.

2.5. Example. Let D be a right Ore domain which is not a left Ore

domain, P be the right field of quotients of D, and R=(D)Z. Clearly

P is a prime ring of dimension 3. Select g,hQD' such thatDgC\Dh = 0,

andlet«=geu-(-e2i, z> = e2i+Ae3iinP. Then ul = Rei3+R(eii — ge2i) and

v' = Ren+R(heii — ei3). Since reu and re33 are atoms of J\, evidently

ul and vl are coatoms of J¡. However, ulKJvl = R and Ul(~\vl = 0, and

therefore /j is not modular (since it is not lower semi-modular).

3. Goldie prime rings. A prime ring P such that Pf =0 and dim P

= «> 1 is called a Goldie prime ring. Such rings were studied by Goldie

in [l]. By 2.4, J¡ is a complemented, upper semi-modular lattice

for such a ring.

Let P be a Goldie prime ring and « = dim P. By 2.4, there exists an

independent set {Pi, • • • , Bn\ of atoms of Ji (i.e., (PiU • • • WS,-)

nPi+i = 0, 4 = 1, • • • , « — 1). Hence, {B\, • ■ • , BTn} is an inde-

pendent set of coatoms of L* (i.e., (B\C\ • • • r\BTi)KJB,t+1=R,

4 = 1, • • • , « — 1). If we let

n

Ai =   n  -B*,    i = 1, • • •, »,
6-1; Mi

then we may show lattice-theoretically that {Ai, • • • , An} is an

independent set of atoms of L*. What is more important, the A{ are

in /,. Clearly

n

Bi =     U    -4,-,       i = 1, - • ■ , ».

A Goldie prime ring P of dimension « has a full ring Q of linear

transformations of an « dimensional vector space over a field as a ring

of quotients. This is a weaker result than Goldie's theorem [l, Theo-

rem 11]. It is well-known that the lattices L*(Q) and P*(P) are

isomorphic under the correspondence B^>BC\R, BQL*(Q). (See [5]

for proofs.)

Corresponding to the independent set {Ai, • • • , An) of atoms of

L*(R) defined above is an independent set {&, • • • , Cn\ of atoms

of L*(Q). By [8, Proposition 5, p. 52], there exists a set {e,,} of «2

matrix units in Q such that C, = e¿¿(2, 4 = 1, • • • , «. Hence, A{

= (euQ)r\R and P4r = (Ejy¿ e¡jQ)r\R, ¿ = 1, • • • , ». Relative to the
chosen set of matrix units of Q, we can find a field P commuting

with the e¿y such that [5, Proposition 6, p. 52]
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Q =  E Fa, S W-
•V-l

Since 73; (in R) = [B'i (in <2)]CYR and 5; (in Q)GL*(Q), evidently

P\ (m (?) = EjV'^vQ- Hence, BidQeui^R for each j. Actually, 73 <
= Qeui\R for each ¿ since [<2e¿in#]7^ = 0. Since AiB¡^Q for all t

and j, we see that

Ai C\ Bj = FyCiy, f, j — 1, • • • , M

for some nonzero additive subgroups i",-,- of F satisfying (1). Hence,

5 =   Ê *V<y

is a prime subring of i?.

Each nonzero left ideal of R has R as a right ring of quotients.

In particular, Bi^R and L*(Bi)^L*(R). Therefore, {Fuen, ■ ■ ■ ,

Fnißni} is an atomic basis of L*(Bi) and Fnen+ • • • -\-FnieniúBi

= i?. Consequently, S^R^(F)n. Now we can apply 1.3 to obtain the

following result.

3.1. Faith-Utumi Theorem. Every Goldie prime ring R of dimen-

sion « has associated with it a field F and a subring K of F such that

K^Fand (K)n^R^(F)n.

An immediate corollary of 3.1 is Goldie's theorem, which states that

(F)n= {a&_1|a, ¿>Gi?, b regular}. In fact, the following stronger

result (due to Faith) holds.

3.2. Theorem. If R is a Goldie prime ring of dimension n and F is its

associated field, then there exists a subring K of F such that

(F)n= {ak-'laER^EK'}.

Proof. If cE-(F)n, say c= EoíA7le>y where ai}; ¿>oG7£, then ck = a

Çz(K)n for any nonzero ke[\bijK and c = akr1 as desired.
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POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm

which decides whether or not an element in an eighth-group is a

power. A group G is an eighth-group if it is finitely presented in the

form

G = gp(ai, • • • , an; Pi(ax) = 1, • • • , Rm(ay,) = 1),

where (i) each defining relator is cyclically reduced and (ii) if P< and

Bj are cyclic transforms of R{ and P,-, then less than one-eighth of the

length of the shorter one cancels in the product B^Bf1, unless the

product is unity. The notation in this paper is the same as that in

[3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things,

whether or not elements in certain Fuchsian groups are powers. Note

that the Fuchsian group F(p; «1, • • • , «<¡; m), see Greenberg [l], is

an eighth-group if

ip + d + f», »i, • • • , «i > 8.

Hence our algorithm holds for a somewhat wider class of groups and,

furthermore, is purely algebraic.

Remark. Given any word F in a finitely presented group, it is

possible to find a cyclically fully reduced word V* conjugate to V by

writing the word F in a circle and then reducing. Such a word V*

will be called a reduced cyclic transform oí V.

2. The algorithm. First we prove a lemma about eighth-groups G.

Here r denotes the length of the largest defining relator in G.
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