PRIME MATRIX RINGS
R. E. JOHNSON?

If Fis a ring, then an obvious way to construct subrings of (F)a,,
the ring of all »X#n matrices over F, is to choose additive subgroups
F;; of F such that

) FiFpu CFa, k=1, ,n,
and then form the ring
@ R= 2 Fyey

i,5=1

where the e;; are the usual unit matrices. For example, we could select
n left ideals A4, - - -, A, of either F or a subring of F and then let
F,'j=Aj, ’L.,j——'—l, e, M.

If Fisa (skew) field and the F;; satisfying (1) are all nonzero, then
R defined by (2) is easily shown to be a prime ring. The main result
of this paper (1.3) is that if F is a right ring of quotients of Fy then
(F), is a right ring of quotients of R and there exists a subring K of
F and a nonzero diagonal matrix dE R such that (K), is a subring
of dRd~! and F is a ring of quotients of K. This result is used to give
new proofs of the Faith-Utumi theorem [2] and of Goldie’s theorem

[1].

1. Prime matrix rings. If 4 is a subset of a ring, then let 4’
={x€A4|x0}. If 4 and B are subsets of a field, then denote by
AB-'={ab~!|a€A4,bCB’}. The notation R< S is used to show that
S is a right ring of quotients of R; that is, that R is a subring of S and
a RNR#0forallacS’. Itisreadily seen thatif Fisa field and Kisa
subring of F, then K=< F iff KK-'=F.

1.1. LEMMA. Let F be a field and A be a subring of F for which
AA-=F. If B and C are nonzero right A-modules contained in F, then
BNC#0 and BC'=F.

Proor. For any fEF', bEB’, and ¢& (', there exist a,E4 such
that b-fc=aas*. Hence, f=(ba1)(cas)*€BC~'. We conclude that
BC'=F. If f=1, then bai=ca; and evidently BNC#0.

1.2. THEOREM. Let F be a field, { Fi|4, j=1,- -, n} be a set of
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nonzero additive subgroups of F satisfying (1), and R be the prime ring
defined by (2). Then RZ(F)a iff Fu<F.

Proor. If R<(F)., then for every dE F’ there exists a ER such
that (den)a€R’. If a= ) aie:;, where a;;€F;;, then dai;€ F, and
dE Fy;F3' for some j. Since fg~'=(fk)(gh)™! for all f, g€ Fy; and
hE Fj, evidently Fy;F;' C FuFyy' for all j. Hence, FCFuFy' and
Fu=F.

Conversely, if Fu<F then FaF;'=F for all 7 and j by 1.1. Actu-
ally, fg=1=(fh)(gh)~" for all fE F},, gE F;;, kE F}; so that FuFg'=F
for all 4, 7, k. Since each Fy is a right Fi-module, the Fi-module
F;=i.; Fu is nonzero and F;Fi'=F by 1.1. Clearly each F; is a
subring of F. Thus, R contains a subring S of the form

(3) S = 2": Fje

$,jm=1
where the F; are subrings of F satisfying
@ FF; CFj, F; £ F, L,i=1..-,n

To complete the proof of 1.2, we need only prove that S=(F),.
Let a= Y a;e;E(F),, with a,,50. Then there exist b;€ F! such
that a;,b;EF, for each 4. Since b:1F,N\ + + - Mb,F,5%0 by 1.1, there
exists some bEF, such that a, bEF, for each 7. Hence, a(be.,)
= Zai.bei.ES. Therefore, S<(F), and 1.2 is proved.

It is easy to give an example showing that /" - - - N F, might
be zero in ring S of (3). Thus, if D is a right Ore domain having right
field of quotients F (i.e., DD-'=F) but D is not a left Ore domain
(i.e., D~1D# F), then there exist nonzero left ideals F; of D such that
FN - - - NF,=0. Still, S (F), if Sis defined by (3). Although the
intersection of the Fi might be zero, the intersection of the corre-
sponding subrings of F in some isomorphic image of S in (F), is
nonzero as we shall now show.

Let S be a subring of (F), defined by (3) and (4) above, and let
gEF!,i=1,--,n lIf fi=gigy -+ - gx, k=1, - - -, n, then clearly
each fi € F! and d= ) _fie; has inverse d—'=)_frle;; in (F),. Let

n

T =dSd' = Y, (fiFifiMes,

$,j=1
an isomorphic image of S. Evidently T'< (F),. Since faafi ! =figip1 + *
gn0g + - - gif T ESFifi! for all aE Fy, clearly

0 SEf = fuFrfi.

$,j=1
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If we let K =f,Fifi’}, then K is a subring of F for which KK—!=F by
1.1. Evidently (K), CT and also (K). =< (F), by 1.2. We have proved
the following result.

1.3. THEOREM. Let F be @ field, F;; be nonzero additive subgroups of
F satisfying (1), and R be the prime ring defined by (2). If Fu<F, then
there exists a subring K of F and a nonsingular diagonal matrix d&R
such that KK—'=F and (K)» £dRd"'S(F)..

2. The annihilator ideal lattice. In order to apply the theorems of
§1 to prime rings in general, we need the following lattice-theoretic
results. Since we wish to use these results in another context [7],
we shall state them in as general terms as possible.

Let R be a ring, L, be the lattice of right ideals of R, and R* be
the right singular ideal of R. Thus, b&R2 iff b= {xER|bx=0} is a
large right ideal; i.e., b\ A 50 for all nonzero A € L,. If R} =0, then
we denote the lattice of closed right ideals of R by LY. Thus, ACL
iff A is the only essential extension of A4 in L,. It is well-known that
L} is a complete complemented modular lattice.

If L is a lattice containing 0 and I, then a minimal (maximal) ele-
ment of L— {0} (L— {I}) is called an atom (coatom). If R*=0 and
L} is atomic (i.e., every nonzero element of L’ contains an atom),
then let us denote by R® the union in L, of all atoms of LF. A ring R
is called (right) stable [6] iff R* =0, L is atomic, and (R?)r=0. Not
only is every prime ring (for which L} is atomic) stable, but so also
is every n X# triangular matrix ring over a right Ore domain.

Another lattice associated with a ring R is the lattice J, of anni-
hilating right ideals of R. If R* =0 then J, is a subset, although not
necessarily a sublattice, of L¥. However, intersections are set-theo-
retic in both lattices.

Needless to say, the corresponding left structure of a ring R is indi-
cated by replacing each “r” above by an “I”.

The following lemma, due to Koh [3], is basic to the work of this
section. Our proof is a paraphrase of Koh’s proof for prime rings.

2.1. LEMMA. If R is a stable ring then R =0.

Proor. If R20 and dE(R})’, then Ad#0 for some atom A€ L}
and ad#0 for some a©A’. Since RaNd'#0, xa#0 and xad =0 for
some xER’. However, a’ is a coatom of L} by [4, 6.9] and therefore
(xa)r=ar. This contradiction proves the lemma.

The lattices J, and J; are dual isomorphic under the correspond-
ence A—A', AC J,. If Ris a stable ring then the lattice J; is atomic.
Actually, let us show that if 4, B&J, with ANB#B, then there
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exists an atom C& J; such that CCB and CN4 =0. By 2.1, LDJ,
and there exists some nonzero D& Ly such that D CB and DN\4 =0.
Since R is stable, ED #0 and hence END 30 for some atom EC LY.
If dE(END)’, then d is a coatom of L by [4, 6.9]. Therefore, dr
is a coatom of J, and C=d" is an atom of J;. Clearly CCB
and CN4 =0.

If Bis any atom of J; then B"is a coatom of L} by the proof above.
Thus, if B covers 0 in J; then 07= R covers B in L}. This is a special
case of the following result.

2.2. LEMMA. Let R be a stable ring and A, BE J,. Then B is a cover
of A in Jiiff At is a cover of BT in L}.

Proor. If A7 isa cover of B"in L¥, then Arisa cover of Br in J, and
Bisacover of 4 in J;. Conversely, if B is a cover of 4 in J; then there
exists an atom CE& Jysuch that CC B and CNMA4 =0. Clearly B=4A\UC
in J;. Hence, Br=A'N(C". Since Cr is a coatom of L} and A C,
evidently A"UC =R in LY. Therefore, the intervals [C’, R] and
[ArMC7, A7] are isomorphic and A* covers AN\ (= Br.

The main result of this section is as follows.

2.3. THEOREM. If R is a stable ring then the lattice J, is upper semi-
modular.

Proor. Let 4, BEJ; be covers of ANB. Then (AMNB)* covers 4"
and B in L} by 2.2. Hence, (ANB)"=A"UBr in L}. By the modular-
ity of L¥, Ar and Br cover AN Br. Therefore, AAUB [=(A"MNB")!]
covers A and B in J; by 2.2. This proves 2.3.

If the lattice L} has a finite dimension #, then we call # the (right)
dimension of R and write dim R=un.

2.4. CorOLLARY. If R is a stable ring such that dim R=mn, then Jyisa
complemented lattice of dimension n.

Proor. Every maximal chain in J; has length by 2.2, and therefore
dim J;=n. To show that J; is complemented, let 4, B&J; with
ANB=0and A\UB#R. Then there exists an atom CEJ; such that
CN(A\UB) =0. We claim that AN(B\JC) =01in J;. If this is so, then
by induction there exists some D& J; such that AND =0 and A\UD
=R. Hence, J; is complemented.

If AN(BUC)#0, then there exists an atom EE&J; such that
ECAN(BUC). Then ENB=0, ErDA", and ErDB'M(r. Clearly
C"\U(A"MB") =R in L¥. Hence, Br=B"N[C"U(4"N\B")]=(B"NC")
U(4A"M\Br) and ED B, contrary to the fact that ENB=0. Hence,
AN(BUC) =0.
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The lattice J; of a stable ring R is not necessarily modular, as the
following example shows.

2.5. EXAMPLE. Let D be a right Ore domain which is not a left Ore
domain, F be the right field of quotients of D, and R=(D);. Clearly
Ris a prime ring of dimension 3. Select g, k€ D’ such that DgN\DE =0,
and let u = gey1+en, v =e21-+hes in R. Then u! = Ress+ R(en — gea) and
v'=Ren+ R(heia—e1s). Since rey and res; are atoms of J;, evidently
u! and ! are coatoms of J;. However, u*\Uy'=R and U'"\v'=0, and
therefore J; is not modular (since it is not lower semi-modular).

3. Goldie prime rings. A prime ring R such that R*=0 and dim R
=n>1is called a Goldie prime ring. Such rings were studied by Goldie
in [1]. By 2.4, J; is a complemented, upper semi-modular lattice
for such a ring.

Let R be a Goldie prime ring and n=dim R. By 2.4, there exists an
independent set {Bl, CILIEIN B,,} of atoms of J; (i.e., BV -+ - UB)
NBi1=0, 2=1, - -, n—1). Hence, {B}, . B’} is an inde-
pendent set of coatoms of Lf (ie., (BN :-:-NB)UB;,, =
1=1, .-, n—1). If welet

4i= N B:: i=1-:--,n,

$m=1; 1pts

then we may show lattice-theoretically that {4, - - -, 4,} is an
independent set of atoms of L. What is more important, the 4; are
in J,. Clearly

Bi= U 4, i=1,---,n.

Jm=1; 544

A Goldie prime ring R of dimension # has a full ring Q of linear
transformations of an # dimensional vector space over a field as a ring
of quotients. This is a weaker result than Goldie’s theorem [1, Theo-
rem 11]. It is well-known that the lattices L¥*(Q) and L*(R) are
isomorphic under the correspondence B—BNR, BEL!(Q). (See [5]
for proofs.)

Corresponding to the independent set {4, - - -, 4,} of atoms of
L}(R) defined above is an independent set {Cy, - - +, Ca} of atoms
of LY(Q). By [8, Proposition 5, p. 52], there exists a set {e;;} of n?
matrix units in Q such that C;=e;Q, i=1, - - -, n. Hence, 4;
=(e+Q)NR and B;=(D_jxi€;;0)NR, i=1, - - -, n. Relative to the
chosen set of matrix units of Q, we can find a field F commuting
with the e;; such that [S, Proposition 6, p. 52]
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Q= 2 Fe; = (P
§, =1
Since B} (in R)=[B} (in Q)]JNR and B; (in Q)EL}(Q), evidently
B; (in Q) = D_;.: €;;0. Hence, B;CQe;s R for each i. Actually, B;
=QeiNR for each 1 since [Qe;;\R]B;=0. Since A4;B;#0 for all ¢
and j, we see that

A;f\B,'=F"j€ij, 'iyj=1;"':”

for some nonzero additive subgroups F;; of F satisfying (1). Hence,

S = Z F‘je;j
$.j=1
is a prime subring of R.

Each nonzero left ideal of R has R as a right ring of quotients.
In particular, By<R and L}(B:)=L¥(R). Therefore, { Fueu, - - -,
Fuen} is an atomic basis of L¥(B)) and Fuen+ - - - +Fuem<Bi
=< R. Consequently, S< R=< (F),. Now we can apply 1.3 to obtain the
following result.

3.1. FaitH-UtuM1 THEOREM. Every Goldie prime ring R of dimen-
sion n has associated with it a field F and a subring K of F such that
K=Fand (K)a=R=Z(F)n.

An immediate corollary of 3.1is Goldie's theorem, which states that
(F)o={ab~'|a, BER, b regular}. In fact, the following stronger
result (due to Faith) holds.

3.2. THEOREM. If R is a Goldie prime ring of dimension n and F is its
associated field, then there exists a subring K of F such that

(F), = {ak'| s ER, k E K'}.

PRrOOF. If c€ (F),, say ¢= D _aib;'e;j where a;j, b;;EK, then ck=a
€ (K), for any nonzero kENb,;K and c=ak~! as desired.
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POWERS IN EIGHTH-GROUPS
SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm
which decides whether or not an element in an eighth-group is a
power. A group G is an eighth-group if it is finitely presented in the
form

G= gp(al’ *0 oty Qny Rl(a)\) =1,.--, Rm(a)‘) = 1))

where (i) each defining relator is cyclically reduced and (ii) if B; and
B;are cyclic transforms of R; and R;, then less than one-eighth of the
length of the shorter one cancels in the product Bi'Bf?, unless the
product is unity. The notation in this paper is the same as that in
[3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things,
whether or not elements in certain Fuchsian groups are powers. Note
that the Fuchsian group F(p; m, - - - , na; m), see Greenberg [1], is
an eighth-group if

4p+d+mmny -, n> 8.

Hence our algorithm holds for a somewhat wider class of groups and,
furthermore, is purely algebraic.

REMARK. Given any word V in a finitely presented group, it is
possible to find a cyclically fully reduced word V* conjugate to V by
writing the word V in a circle and then reducing. Such a word V*
will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G.
Here r denotes the length of the largest defining relator in G.
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