PRIME MATRIX RINGS

R. E. JOHNSON¹

If F is a ring, then an obvious way to construct subrings of $(F)_n$, the ring of all $n \times n$ matrices over F, is to choose additive subgroups F_{ij} of F such that

$$(1) F_{ij}F_{jk} \subset F_{ik}, i, j, k = 1, \dots, n,$$

and then form the ring

$$(2) R = \sum_{i,j=1}^{n} F_{ij}e_{ij}$$

where the e_{ij} are the usual unit matrices. For example, we could select n left ideals A_1, \dots, A_n of either F or a subring of F and then let $F_{ij} = A_j$, $i, j = 1, \dots, n$.

If F is a (skew) field and the F_{ij} satisfying (1) are all nonzero, then R defined by (2) is easily shown to be a prime ring. The main result of this paper (1.3) is that if F is a right ring of quotients of F_{11} then $(F)_n$ is a right ring of quotients of R and there exists a subring K of F and a nonzero diagonal matrix $d \in R$ such that $(K)_n$ is a subring of dRd^{-1} and F is a ring of quotients of K. This result is used to give new proofs of the Faith-Utumi theorem [2] and of Goldie's theorem [1].

- 1. Prime matrix rings. If A is a subset of a ring, then let $A' = \{x \in A \mid x \neq 0\}$. If A and B are subsets of a field, then denote by $AB^{-1} = \{ab^{-1} \mid a \in A, b \in B'\}$. The notation $R \leq S$ is used to show that S is a right ring of quotients of R; that is, that R is a subring of S and a $R \cap R \neq 0$ for all $a \in S'$. It is readily seen that if F is a field and K is a subring of S, then $S \subseteq S'$ if $S \subseteq S'$.
- 1.1. LEMMA. Let F be a field and A be a subring of F for which $AA^{-1} = F$. If B and C are nonzero right A-modules contained in F, then $B \cap C \neq 0$ and $BC^{-1} = F$.

PROOF. For any $f \in F'$, $b \in B'$, and $c \in C'$, there exist $a_i \in A$ such that $b^{-1}fc = a_1a_2^{-1}$. Hence, $f = (ba_1)(ca_2)^{-1} \in BC^{-1}$. We conclude that $BC^{-1} = F$. If f = 1, then $ba_1 = ca_2$ and evidently $B \cap C \neq 0$.

1.2. THEOREM. Let F be a field, $\{F_{ij}|i, j=1, \dots, n\}$ be a set of

Received by the editors July 30, 1964.

¹ Research supported in part by NSF Grant G-24155.

nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). Then $R \leq (F)_n$ iff $F_{11} \leq F$.

PROOF. If $R \leq (F)_n$, then for every $d \in F'$ there exists $a \in R$ such that $(de_{11})a \in R'$. If $a = \sum a_{ij}e_{ij}$, where $a_{ij} \in F_{ij}$, then $da_{1j} \in F'_{1j}$ and $d \in F_{1j}F_{1j}^{-1}$ for some j. Since $fg^{-1} = (fh)(gh)^{-1}$ for all f, $g \in F_{1j}$ and $h \in F_{j1}$, evidently $F_{1j}F_{1j}^{-1} \subset F_{11}F_{11}^{-1}$ for all j. Hence, $F \subset F_{11}F_{11}^{-1}$ and $F_{11} \leq F$.

Conversely, if $F_{11} \leq F$ then $F_{i1}F_{j1}^{-1} = F$ for all i and j by 1.1. Actually, $fg^{-1} = (fh)(gh)^{-1}$ for all $f \in F'_{i1}$, $g \in F'_{i1}$, $h \in F'_{ik}$ so that $F_{ik}F_{jk}^{-1} = F$ for all i, j, k. Since each F_{ik} is a right F_{kk} -module, the F_{kk} -module $F_{kk} = \bigcap_{i=1}^{n} F_{ik}$ is nonzero and $F_{k}F_{k}^{-1} = F$ by 1.1. Clearly each F_{k} is a subring of F. Thus, $F_{kk} = F_{kk}$ contains a subring $F_{kk} = F_{kk}$ of the form

$$S = \sum_{i,j=1}^{n} F_j e_{ij}$$

where the F_i are subrings of F satisfying

$$(4) F_{i}F_{j} \subset F_{j}, F_{i} \leq F, i, j = 1, \cdots, n.$$

To complete the proof of 1.2, we need only prove that $S \leq (F)_n$. Let $a = \sum a_{ij}e_{ij} \in (F)_n$, with $a_{rs} \neq 0$. Then there exist $b_i \in F_s'$ such that $a_{is}b_i \in F_s$ for each i. Since $b_1F_s \cap \cdots \cap b_nF_s \neq 0$ by 1.1, there exists some $b \in F_s'$ such that $a_{is}b \in F_s$ for each i. Hence, $a(be_{ss}) = \sum a_{is}be_{is} \in S$. Therefore, $S \leq (F)_n$ and 1.2 is proved.

It is easy to give an example showing that $F_1 \cap \cdots \cap F_n$ might be zero in ring S of (3). Thus, if D is a right Ore domain having right field of quotients F (i.e., $DD^{-1} = F$) but D is not a left Ore domain (i.e., $D^{-1}D \neq F$), then there exist nonzero left ideals F_i of D such that $F_1 \cap \cdots \cap F_n = 0$. Still, $S \leq (F)_n$ if S is defined by (3). Although the intersection of the F_k might be zero, the intersection of the corresponding subrings of F in some isomorphic image of S in $(F)_n$ is nonzero as we shall now show.

Let S be a subring of $(F)_n$ defined by (3) and (4) above, and let $g_i \in F'_i$, $i=1, \dots, n$. If $f_k = g_1g_2 \dots g_k$, $k=1, \dots, n$, then clearly each $f_k \in F'_k$ and $d = \sum f_i e_{ii}$ has inverse $d^{-1} = \sum f_i^{-1} e_{ii}$ in $(F)_n$. Let

$$T = dSd^{-1} = \sum_{i,j=1}^{n} (f_i F_j f_j^{-1}) e_{ij},$$

an isomorphic image of S. Evidently $T \leq (F)_n$. Since $f_n a f_1^{-1} = f_i g_{i+1} \cdot \cdot \cdot g_n a g_2 \cdot \cdot \cdot g_i f_j^{-1} \in f_i F_i f_j^{-1}$ for all $a \in F_1$, clearly

$$\bigcap_{i,j=1}^{n} f_i F_j f_j^{-1} = f_n F_1 f_1^{-1}.$$

If we let $K = f_n F_1 f_1^{-1}$, then K is a subring of F for which $KK^{-1} = F$ by 1.1. Evidently $(K)_n \subset T$ and also $(K)_n \leq (F)_n$ by 1.2. We have proved the following result.

- 1.3. THEOREM. Let F be a field, F_{ij} be nonzero additive subgroups of F satisfying (1), and R be the prime ring defined by (2). If $F_{11} \leq F$, then there exists a subring K of F and a nonsingular diagonal matrix $d \in R$ such that $KK^{-1} = F$ and $(K)_n \leq dRd^{-1} \leq (F)_n$.
- 2. The annihilator ideal lattice. In order to apply the theorems of §1 to prime rings in general, we need the following lattice-theoretic results. Since we wish to use these results in another context [7], we shall state them in as general terms as possible.

Let R be a ring, L_r be the lattice of right ideals of R, and R_r^{Δ} be the right singular ideal of R. Thus, $b \in R_r^{\Delta}$ iff $b^r = \{x \in R \mid bx = 0\}$ is a large right ideal; i.e., $b^r \cap A \neq 0$ for all nonzero $A \in L_r$. If $R_r^{\Delta} = 0$, then we denote the lattice of closed right ideals of R by L_r^* . Thus, $A \in L_r^*$ iff A is the only essential extension of A in L_r . It is well-known that L_r^* is a complete complemented modular lattice.

If L is a lattice containing 0 and I, then a minimal (maximal) element of $L-\{0\}(L-\{I\})$ is called an atom (coatom). If $R_r^{\Delta}=0$ and L_r^* is atomic (i.e., every nonzero element of L_r^* contains an atom), then let us denote by R_r^0 the union in L_r of all atoms of L_r^* . A ring R is called (right) stable [6] iff $R_r^{\Delta}=0$, L_r^* is atomic, and $(R_r^0)^r=0$. Not only is every prime ring (for which L_r^* is atomic) stable, but so also is every $n \times n$ triangular matrix ring over a right Ore domain.

Another lattice associated with a ring R is the lattice J_r of annihilating right ideals of R. If $R_r^{\Delta} = 0$ then J_r is a subset, although not necessarily a sublattice, of L_r^* . However, intersections are set-theoretic in both lattices.

Needless to say, the corresponding left structure of a ring R is indicated by replacing each "r" above by an "l".

The following lemma, due to Koh [3], is basic to the work of this section. Our proof is a paraphrase of Koh's proof for prime rings.

2.1. Lemma. If R is a stable ring then $R_i^{\Delta} = 0$.

PROOF. If $R_i^{\Delta} \neq 0$ and $d \in (R_i^{\Delta})'$, then $Ad \neq 0$ for some atom $A \in L_r^*$ and $ad \neq 0$ for some $a \in A'$. Since $Ra \cap d^l \neq 0$, $xa \neq 0$ and xad = 0 for some $x \in R'$. However, a^r is a coatom of L_r^* by [4, 6.9] and therefore $(xa)^r = a^r$. This contradiction proves the lemma.

The lattices J_r and J_l are dual isomorphic under the correspondence $A \rightarrow A^l$, $A \in J_r$. If R is a stable ring then the lattice J_l is atomic. Actually, let us show that if A, $B \in J_l$ with $A \cap B \neq B$, then there

exists an atom $C \\\in J_l$ such that $C \\\subset B$ and $C \\cap A = 0$. By 2.1, $L_l^* \\\supset J_l$ and there exists some nonzero $D \\in L_l^*$ such that $D \\in B$ and $D \\cap A = 0$. Since R is stable, $ED \\neq 0$ and hence $E \\cap D \\neq 0$ for some atom $E \\in L_r^*$. If $d \\in (E \\cap D)'$, then d^r is a coatom of L_r^* by [4, 6.9]. Therefore, d^r is a coatom of J_l . Clearly $C \\in B$ and $C \\cap A = 0$.

If B is any atom of J_l then B^r is a coatom of L_r^* by the proof above. Thus, if B covers 0 in J_l then $0^r = R$ covers B^r in L_r^* . This is a special case of the following result.

2.2. LEMMA. Let R be a stable ring and A, $B \in J_1$. Then B is a cover of A in J_1 iff A^r is a cover of B^r in L_r^* .

PROOF. If A^r is a cover of B^r in L_r^* , then A^r is a cover of B^r in J_r and B is a cover of A in J_l . Conversely, if B is a cover of A in J_l then there exists an atom $C \\in \\mathcal{i}$ such that $C \\in \\mathcal{C}$ and $C \\in \\mathcal{A} = 0$. Clearly $B = A \\ightharpoonup C^r$ in J_l . Hence, $B^r = A^r \\ightharpoonup C^r$. Since C^r is a coatom of L_r^* and $A^r \\mathcal{C} \\mathcal{C$

The main result of this section is as follows.

2.3. THEOREM. If R is a stable ring then the lattice J_l is upper semi-modular.

PROOF. Let $A, B \in J_l$ be covers of $A \cap B$. Then $(A \cap B)^r$ covers A^r and B^r in L_r^* by 2.2. Hence, $(A \cap B)^r = A^r \cup B^r$ in L_r^* . By the modularity of L_r^* , A^r and B^r cover $A^r \cap B^r$. Therefore, $A \cup B = (A^r \cap B^r)^l$ covers A and B in J_l by 2.2. This proves 2.3.

If the lattice L_r^* has a finite dimension n, then we call n the (right) dimension of R and write dim R=n.

2.4. COROLLARY. If R is a stable ring such that dim R = n, then J_1 is a complemented lattice of dimension n.

PROOF. Every maximal chain in J_l has length by 2.2, and therefore dim $J_l = n$. To show that J_l is complemented, let A, $B \in J_l$ with $A \cap B = 0$ and $A \cup B \neq R$. Then there exists an atom $C \in J_l$ such that $C \cap (A \cup B) = 0$. We claim that $A \cap (B \cup C) = 0$ in J_l . If this is so, then by induction there exists some $D \in J_l$ such that $A \cap D = 0$ and $A \cup D = R$. Hence, J_l is complemented.

If $A \cap (B \cup C) \neq 0$, then there exists an atom $E \in J_t$ such that $E \subset A \cap (B \cup C)$. Then $E \cap B = 0$, $E^r \supset A^r$, and $E^r \supset B^r \cap C^r$. Clearly $C^r \cup (A^r \cap B^r) = R$ in L_r^* . Hence, $B^r = B^r \cap [C^r \cup (A^r \cap B^r)] = (B^r \cap C^r) \cup (A^r \cap B^r)$ and $E^r \supset B^r$, contrary to the fact that $E \cap B = 0$. Hence, $A \cap (B \cup C) = 0$.

The lattice J_i of a stable ring R is not necessarily modular, as the following example shows.

- 2.5. EXAMPLE. Let D be a right Ore domain which is not a left Ore domain, F be the right field of quotients of D, and $R = (D)_3$. Clearly R is a prime ring of dimension 3. Select $g, h \in D'$ such that $Dg \cap Dh = 0$, and let $u = ge_{11} + e_{21}$, $v = e_{21} + he_{31}$ in R. Then $u^l = Re_{33} + R(e_{11} ge_{21})$ and $v^l = Re_{11} + R(he_{12} e_{13})$. Since re_{11} and re_{33} are atoms of J_i , evidently u^l and v^l are coatoms of J_i . However, $u^l \cup v^l = R$ and $U^l \cap v^l = 0$, and therefore J_i is not modular (since it is not lower semi-modular).
- 3. Goldie prime rings. A prime ring R such that $R_{\tau}^{\Delta} = 0$ and dim R = n > 1 is called a *Goldie prime ring*. Such rings were studied by Goldie in [1]. By 2.4, J_{l} is a complemented, upper semi-modular lattice for such a ring.

Let R be a Goldie prime ring and $n = \dim R$. By 2.4, there exists an independent set $\{B_1, \dots, B_n\}$ of atoms of J_i (i.e., $(B_1 \cup \dots \cup B_i) \cap B_{i+1} = 0, i = 1, \dots, n-1$). Hence, $\{B_1^r, \dots, B_n^r\}$ is an independent set of coatoms of L_r^* (i.e., $(B_1^r \cap \dots \cap B_i^r) \cup B_{i+1}^r = R$, $i = 1, \dots, n-1$). If we let

$$A_j = \bigcap_{i=1; i \neq j}^n B_i^r, \qquad j = 1, \cdots, n,$$

then we may show lattice-theoretically that $\{A_1, \dots, A_n\}$ is an independent set of atoms of L_r^* . What is more important, the A_i are in J_r . Clearly

$$B_i^r = \bigcup_{j=1; j\neq i}^n A_i, \qquad i=1, \cdots, n.$$

A Goldie prime ring R of dimension n has a full ring Q of linear transformations of an n dimensional vector space over a field as a ring of quotients. This is a weaker result than Goldie's theorem [1, Theorem 11]. It is well-known that the lattices $L_r^*(Q)$ and $L_r^*(R)$ are isomorphic under the correspondence $B \rightarrow B \cap R$, $B \in L_r^*(Q)$. (See [5] for proofs.)

Corresponding to the independent set $\{A_1, \dots, A_n\}$ of atoms of $L_r^*(R)$ defined above is an independent set $\{C_1, \dots, C_n\}$ of atoms of $L_r^*(Q)$. By [8, Proposition 5, p. 52], there exists a set $\{e_{ij}\}$ of n^2 matrix units in Q such that $C_i = e_{ii}Q$, $i = 1, \dots, n$. Hence, $A_i = (e_{ii}Q) \cap R$ and $B_i^r = (\sum_{j \neq i} e_{jj}Q) \cap R$, $i = 1, \dots, n$. Relative to the chosen set of matrix units of Q, we can find a field F commuting with the e_{ij} such that [5, Proposition 6, p. 52]

$$Q = \sum_{i,j=1}^{n} Fe_{ij} \cong (F)_{n}.$$

Since B_i^r (in R) = $[B_i^r$ (in Q)] $\cap R$ and B_i^r (in Q) $\in L_r^*(Q)$, evidently B_i^r (in Q) = $\sum_{j\neq i} e_{jj}Q$. Hence, $B_i \subset Qe_{ii} \cap R$ for each i. Actually, $B_i = Qe_{ii} \cap R$ for each i since $[Qe_{ii} \cap R]B_i^r = 0$. Since $A_iB_j \neq 0$ for all i and j, we see that

$$A_i \cap B_j = F_{ij}e_{ij}, \quad i, j = 1, \dots, n$$

for some nonzero additive subgroups F_{ij} of F satisfying (1). Hence,

$$S = \sum_{i,j=1}^{n} F_{ij} e_{ij}$$

is a prime subring of R.

Each nonzero left ideal of R has R as a right ring of quotients. In particular, $B_1 \leq R$ and $L_r^*(B_1) \cong L_r^*(R)$. Therefore, $\{F_{11}e_{11}, \cdots, F_{n1}e_{n1}\}$ is an atomic basis of $L_{r_c}^*(B_1)$ and $F_{11}e_{11} + \cdots + F_{n1}e_{n1} \leq B_1 \leq R$. Consequently, $S \leq R \leq (F)_n$. Now we can apply 1.3 to obtain the following result.

3.1. FAITH-UTUMI THEOREM. Every Goldie prime ring R of dimension n has associated with it a field F and a subring K of F such that $K \leq F$ and $(K)_n \leq R \leq (F)_n$.

An immediate corollary of 3.1 is Goldie's theorem, which states that $(F)_n = \{ab^{-1} | a, b \in \mathbb{R}, b \text{ regular}\}$. In fact, the following stronger result (due to Faith) holds.

3.2. Theorem. If R is a Goldie prime ring of dimension n and F is its associated field, then there exists a subring K of F such that

$$(F)_n = \{ak^{-1} | a \in R, k \in K'\}.$$

PROOF. If $c \in (F)_n$, say $c = \sum a_{ij}b_{ij}^{-1}e_{ij}$ where a_{ij} , $b_{ij} \in K$, then $ck = a \in (K)_n$ for any nonzero $k \in \bigcap b_{ij}K$ and $c = ak^{-1}$ as desired.

BIBLIOGRAPHY

- 1. A. W. Goldie, The structure of prime rings under ascending chains conditions, Proc. London Math. Soc. 8 (1958), 589-608.
- 2. C. Faith and Y. Utumi, On noetherian prime rings, Trans. Amer. Math. Soc. 114 (1965), 53-60.
- 3. K. Koh, On one sided ideals which are prime rings, Amer. Math. Monthly (to appear).
- 4. R. E. Johnson, Structure theory of faithful rings. II, Trans. Amer. Math. Soc. 84 (1957), 523-544.

- 5. ———, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.
- 6. —, Rings with zero right and left singular ideals, Trans. Amer. Math. Soc. 118 (1965), 150-157.
 - 7. ——, Potent rings, Trans. Amer. Math. Soc. 119(1965), 524-534.
- 8. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.

University of Rochester

POWERS IN EIGHTH-GROUPS

SEYMOUR LIPSCHUTZ

1. Introduction. The purpose of this paper is to give an algorithm which decides whether or not an element in an eighth-group is a power. A group G is an eighth-group if it is finitely presented in the form

$$G = gp(a_1, \dots, a_n; R_1(a_{\lambda}) = 1, \dots, R_m(a_{\lambda}) = 1),$$

where (i) each defining relator is cyclically reduced and (ii) if B_i and B_j are cyclic transforms of R_i and R_j , then less than one-eighth of the length of the shorter one cancels in the product $B_i^{\pm 1}B_j^{\pm 1}$, unless the product is unity. The notation in this paper is the same as that in [3]. Note that Lemma 3 and Lemma 4 in [3] hold for eighth-groups.

Reinhart [4] gives an algorithm to decide, among other things, whether or not elements in certain Fuchsian groups are powers. Note that the Fuchsian group $F(p; n_1, \dots, n_d; m)$, see Greenberg [1], is an eighth-group if

$$4p + d + m, n_1, \dots, n_d > 8.$$

Hence our algorithm holds for a somewhat wider class of groups and, furthermore, is purely algebraic.

REMARK. Given any word V in a finitely presented group, it is possible to find a cyclically fully reduced word V^* conjugate to V by writing the word V in a circle and then reducing. Such a word V^* will be called a reduced cyclic transform of V.

2. The algorithm. First we prove a lemma about eighth-groups G. Here r denotes the length of the largest defining relator in G.

Received by the editors April 3, 1964.