
MAXIMAL QUOTIENT RINGS1

CARL FAITH AND YUZO UTUMI2

Let R be an associative ring in which an identity element is not

assumed. A right quotient ring of P is an overring 5 such that for

each aQS there corresponds rQR such that arQR and ar 9*0. A

theorem of R. E. Johnson [l ] states that R possesses a right quotient

ring S which is a (von Neumann) regular ring if and only if P has

vanishing right singular ideal. In this case P possesses a unique (up

to isomorphism over P) maximal right quotient ring S, and 5 is regu-

lar and right self-injective (Johnson-Wong [l]). It is easy to see that

5 is the injective hull of P, considering both rings as right P-modules

in the natural way. Thus, each right ideal I oí R has an injective

hull Îr contained in 5. In this notation, S=R¡¡, and we use R to

denote the maximal right quotient ring of P hereafter. By the results

of Johnson [2], Îr can be characterized in two ways:

(a) Ir is the unique maximal essential extension of I contained in

the right P-module P.
(b) Îr is the principal right ideal of R generated by I.
Since Îr is therefore a right ideal of R, A = Homg (ÎR, ÎR) is de-

fined. Setting r = HomÄ (7, I), one of our main results (Theorem 2)

states that f = Homg (Îr, Îr) =A. This means that T has vanishing

right singular ideal, and that A is the maximal right quotient ring

of r.
Since Îr is a principal right ideal in the regular ring R, there exists

an idempotent eQR such that îR — eÈ.. Then, of course, AÇ^eRe, and

it is natural to investigate the relationship between eRe and K

= eRei\R. In general, it is too much to hope that eRe = K, since it

is possible that K = Of or some nonzero eQR. Nevertheless, under the

assumption that R is also a left quotient ring of P, or in case e is a

primitive idempotent satisfying eReC\R9*0, we establish (Theorem

3) that K has vanishing right singular ideal, and that eRe = K ( = the

maximal right quotient ring of A.) In any case, for any nonzero idem-

potent eGPi eRe is the maximal right quotient ring of eRe.

Since we are not restricting ourselves to rings with identity, we say
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that an arbitrary (right) module M¡¡ over a ring R is injective in case

it possesses the following property: if AR is any module, and if BR

is any submodule, then any homomorphism Br-^Mr can be extended

to a homomorphism Ar—>Mr. In case R has an identity element,

then a unital module Mr is w-injective in case it has the property

above with Ar ranging over all unital modules. It is easy to see that

a unital module Mr is injective if and only if it is w-injective (cf.

Faith-Utumi [l]). Baer's criterion (loc. cit.) states that a unital

module Mr is injective if and only if it has the following property:

If / is any module homomorphism of a right ideal I of R into M, then

there exists m<E:Msuch that/(x) = mx\/xG7. Call this latter property

of a module Mr Baer's condition. It is known (loc. cit.) that if Mr

is an arbitrary injective module, then it satisfies Baer's condition.

Accordingly, if 5 is any ring which is right self-injective, the identity

map x—>x can be performed by a left multiplication by an element

eG-5 which is patently a left identity element of 5. If 5 is left-faith-

ful, any left identity is two-sided. In particular, any semiprime right

self-injective ring possesses an identity element. We use this fact

below.

Theorem I. If S is semiprime and right self-injective, then for any

idempotent eG-S, eSe is semiprime and right self-injective.

Proof. Let I be any right ideal of eSe which is nilpotent of index

2. Then (IS)2 = (IS)(IS) = (IeS)(eIS) = [l(eSe)]lSQI2S = 0. Thus,
IS is a nilpotent right ideal of S, whence 75 = 0 and 7 = 0. Since

eSe does not contain nilpotent right ideals of index 2, it follows that

eSe is semiprime.

Now let 7 be any right ideal of eSe, let x= Eî x»s»> #»£7, s,£5,

i= 1, • • • , « be any element of 75. Let/GHomcs«(7, eSe), and let T

denote the set of all elements  E"/(x>)/''£ E" f(xi)S, riES, i=\,

•••,«, such that Eî x,r< = 0. Clearly T is a right ideal of 5, and

TQÍ%f(x<)SQeS. Now if i= Eî/C*^^. then

E /(*<)»"< \e = E [/■(*.■)«]>■<« = E/(*0 (*>•<«)

= Ê/0w«0 =/( E *<r*i = /(0) = o.

Thus T2 = (er)2 = 0, and T = 0, since 5 is semiprime. It follows that

x= E? XíSí = 0 implies that E" f(xî)Si = 0, so that the correspon-

dence
n

/': x->E/(*«)•*<>
i
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defined for any xQIS, is an element of Homs(/5, S). Since 5s is in-

jective, and S is semiprime, S has an identity element, so Ss satisfies

Baer's condition. Accordingly, there exists mQS such that f'(x)

= wxVxGP5. In particular, if xGP then x = xe, so that f (x) =f(x)e

=/(x). Thus, f(x) = (eme)x\fxQI. Since emeQeSe, this shows that

(eSe)eSe satisfies Baer's condition, and eSe is therefore right self-

injective.

The proof of the next theorem needs some facts about essential and

rational extensions, and the proofs of these may be found in Findlay-

Lambek [l] and Johnson-Wong [l]. Recall that Mr is an essential

extension of a submodule Nr in case each nonzero submodule of Mr

has nonzero intersection with NR; we symbolize this by (MVN)R;

B(MVA) denotes the right-left symmetry for a left module RM.

Then Nr is an essential submodule of MR. An essential left ideal I of R

is a left ideal such that P VP
The singular submodule Z(MR) is defined by:

Z(MR) = {xQM| xi = 0 for some essential right ideal I of P}.

We let ZT(R) denote Z(RR) ; it is an ideal, called the right singular

ideal of P.
A module MR is rational over a submodule NR in case it has the

following property: if P is any module satisfying M~^.P~DN, and if

/GHomÄ(P, M), then/=0 if and only if/(A) =0. We let (M^N)R
denote a rational extension M of N. Any rational extension is essen-

tial; moreover:

If Z(NR) =0, then (MYN)R if and only if (M VA)B.
We shall use the following characterization of rational extensions:

(MVN)R if and only if for each pair x, yQM with y9*0, there exist

rQR and an integer « such that

xr + xn G N   and   yr + y» 9* 0.

We also need the following facts about quotient rings (Johnson

[2]) : Let P be such that Zr(R) = 0, and adopt the notation of the in-

troduction. For each right ideal I of P, let 7 = ÎRC\R. Then 7 is the

unique maximal essential extension of IR contained in P; I is a

closed right ideal of P in case 7=7. The totality Cr(R) of closed right

ideals of P is a complete lattice, and Cr(R) is isomorphic Cr(R) under

the contraction map A —>.4 i\R. From what we already have said,

CT(R) consists of the principal right ideals of R.

Theorem 2. Let R be a semiprime ring stich that Zr(R)=0, let I

be any right ideal of R, let ÎR denote the principal right ideal of R gener-

ated by I, let r = Homfi(7, I), and let A = Homg(7B, ÎR). Then Zr(Y)
= Zr(A) =0, and A — f ( = the maximal right quotient ring of V).
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Proof. Set S=R. As remarked above, ÎR is the injective hull of

7b contained in Sr, and is the principal right ideal of 5 generated by

7. Since 5 is regular, IB = eS, where e = e2ÇES.

We first show that A = Homs(7Ä, ÎR) coincides with ß = Homs(7, 7).

Clearly ÍOA. Conversely if /GO, and if rG7Är\R = 7, then f(r)
=/(e)r. If xG7ä, then xR= {¿G7^|xfG7} is an essential right ideal of

R. Now if ¿Gxfl, then

f(x)t - f(xt) = f(e)xt,

that is, (f(x) —f(e)x)t = 0. Thus, \f(x) —/(e)x]xB = 0. Since ÎR has zero

singular submodule, we conclude that/(x) =/(e)x\/xG/iï. and then

clearly/GA. Thus establishes ñ=A.

Since ÎR is the injective hull of IR, it follows that each yEY has

an extension -yGA = fi, and y is unique, since IR is rational over Ir.

Clearly {7GA|7Gr} is a subring of A isomorphic to V under 7<->y.

Henceforth, consider T as a subring of A.

Now A is isomorphic to the ring eSe. If II denotes the totality of

left multiplications aL of 7 by elements a G 7,

OL'x—*ax       x G 7,

then II is a subring of T, and the natural isomorphism A^eSe maps

IL onto ele and maps T onto a subring Te of eSe. Since Ye^ele, in

order to show that (eSe vr«)r,i it suffices to show that (eSe\JeIe)eie.

Now let 0^SGe5e. Since (eSS7l)R, there exists rG-R such that

0^o>G7. Since br = b(er), it follows that er^O. By the same reason-

ing, since (e5T7)Ä, there exists sGi?, «G£, such that« = er(i+«)G7,

and w = 8r(s+n) 9^0. Since SrG7, it follows that wG7. Since i? is

semiprime, R is left-faithful, hence wR^O and also (wi?)2?í0. There-

fore, one can choose t(E.R such that w' = wt satisfies w" = w'e^0.

Then w' = ou', where u' =ut<E.I and w'G7, and

with u" = u'eEeIe and w"Eele. Thus, (eSeX/eIé),i, as asserted.

Hence e5e is a right quotient ring of re, and A is a right quotient ring

of T. Now 5 is regular (hence semiprime), so that A = eSe is right self-

injective by Theorem 1. Thus, A is a maximal right quotient ring of

T. Since A(9ieSe) is regular, Zr(Y) =Zr(A) =0.

Theorem 3. Let R be any semiprime ring satisfying Zr(R) =0, and

let e be any idempotent in S — R. Then :

(1) eSe = K, where K = eRe.

(2) If Sis also a left quotientring ofR,then eSe = K, where K = eSei\R,

and eSe is also a left quotient ring of K.
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(3) i/ e is a primitive idempotent, and if eSeC\R9*0, then eSe is the

right quotient field of K = eSei\R.

Proof. Let B = (eSr\R) + (l-e)SC\R. The lattice isomorphism

Cr(P)=Cr(P) implies that

[eS\7eSr\ R]R (resp. l(l - e)5V(l - e)S n R]r),

and it follows that (S^B)R. For each xQS, Xb= {bQB\xbQB\ is a
right ideal of B, and (P Vx^)«.

Now choose oQeSe and 5 9*0. Since SB is an essential right ideal of

P, then ôoB9*0 (since Z(SR) =Z(RR) =0). By semiprimeness of P, we

see that (o5B)29*0, so that SS^e^O. Hence we can choose bQbßQB

such that hbe9*0. (Note that ebQeSC\R.)

Case (1). Now ôbQR, and bQR, and obe = h(ebe) = e(5b)e. Thus

09*b(ebe) QeRe with ebeQeRe. This shows that eSe is a right quotient

ring of eRe.

Case (2). Since 5 is a regular ring which is both a right and left

quotient ring of P, necessarily Zi(R) = 0. Then RS is a rational exten-

sion of rR, and, moreover, R(Se) is a rational extension of R(SeC\R).

Now the correspondence x —> xbbe\¡x Q Se is an element

íGHom^Se, Se), and /^O since e(5&e) = bbe9*0. It follows that

f(Sei\R)9*0, that is, that (5enP)5&e^0 and (Sei^R)bb9*0. By the
semiprimeness of P, [(SenP)oZ>]2^0, and so 5&(5enP)^0. Hence

choose uQSer\R such that 5bu9*0. Since &, 56, uQR, then also ô&w,

buQR, and

50« = (eS)b(ue) = e(5bu)e Q eSe H P = A.

Since ebQeSf~\R, and uQSei\R, then k = ebuQK, so that Of^ôA

= hbuQK, with kQK. Since 5 was an arbitrary nonzero element of

eSe, this proves that eSe is a right quotient ring of A.

Case (3). eSe is a division ring and Se is a right vector space over

eSe. Since Se(~\R9*0, and since O^S&eGeSe, it follows that (Sei~\R)èbe

9*0, and the rest of the proof proceeds as in the proof of (2).

In all cases we have deduced that eSe is a right quotient ring of

K without resource to the fact that the right quotient ring 5 of P is

maximal. Now in Case (2), Z¡(P) =0 is a consequence of the fact that

5 is a regular ring which is a left quotient ring of P. Hence, by sym-

metry, we conclude that eSe is a left quotient ring of K in this case.

Since eSe is regular along with S, and since eSe is right self-injec-

tive by Theorem 1, we conclude that eSe = K in all cases, completing

the proof.

Remark. It can be shown that K in (2) need not be semiprime.
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We construct an example which shows that (2) and (3) of Theorem

3 fail under a weakening of the hypothesis.

Let A be a right Ore domain which is not a left Ore domain, and

let Ai, A2 be nonzero elements of A such that AAiHAA2 = 0.

If D denotes the right quotient division ring of A, then S = D2,

the full ring of all 2 X 2 matrices over D, is the classical, and maximal,

right quotient ring of P = A2. Let {ea\i,j=\, Z] denote matrix units

in S, let a = Ar1en+Ar1ei2, and suppose bQS is such that baQR.

Then b= EL-i cüe«'íi Wltn cu^D, i, j — i, 2, and

ba = Cukr^u + Ciikileu + Cnkr^n + cnk^ea.

Since baQKi = R, necessarily

ciiAf1, CnAr1, C2ikr1, Cnkï1 G A,

and then en, CnQKkiC\Kki. Since AAifYAA2 = 0, Cn = c22 = 0, so

necessarily ba = 0. This shows that SaC\R = 0. Now e = kia = eu

-fAiAr^ belongs to Sa, and e = e2. It is easy to see that eSe is a divi-

sion ring (or equivalently, that Se is a minimal left ideal of S), while

eSeí~\R = 0. In particular, eSe is not a quotient ring of eSei\R.

In view of Theorem 3, it is of interest to consider conditions which

imply that the maximal right quotient ring is also a left quotient ring.

The general question has been extensively treated by Utumi [l].
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