MAXIMAL QUOTIENT RINGS1

CARL FAITH AND YUZO UTUMI²

Let R be an associative ring in which an identity element is not assumed. A right quotient ring of R is an overring S such that for each $a \in S$ there corresponds $r \in R$ such that $ar \in R$ and $ar \neq 0$. A theorem of R. E. Johnson [1] states that R possesses a right quotient ring S which is a (von Neumann) regular ring if and only if R has vanishing right singular ideal. In this case R possesses a unique (up to isomorphism over R) maximal right quotient ring S, and S is regular and right self-injective (Johnson-Wong [1]). It is easy to see that S is the injective hull of R, considering both rings as right R-modules in the natural way. Thus, each right ideal I of R has an injective hull \hat{I}_R contained in S. In this notation, $S = \hat{R}_R$, and we use \hat{R} to denote the maximal right quotient ring of R hereafter. By the results of Johnson [2], \hat{I}_R can be characterized in two ways:

- (a) \hat{I}_R is the unique maximal essential extension of I contained in the right R-module \hat{R} .
 - (b) \hat{I}_R is the principal right ideal of \hat{R} generated by I.

Since \hat{I}_R is therefore a right ideal of \hat{R} , $\Delta = \text{Hom}_{\hat{R}}$ (\hat{I}_R , \hat{I}_R) is defined. Setting $\Gamma = \text{Hom}_R$ (I, I), one of our main results (Theorem 2) states that $\hat{\Gamma} = \text{Hom}_{\hat{R}}$ (\hat{I}_R , \hat{I}_R) = Δ . This means that Γ has vanishing right singular ideal, and that Δ is the maximal right quotient ring of Γ .

Since \hat{I}_R is a principal right ideal in the regular ring \hat{R} , there exists an idempotent $e \in \hat{R}$ such that $\hat{I}_R = e\hat{R}$. Then, of course, $\Delta \cong e\hat{R}e$, and it is natural to investigate the relationship between $e\hat{R}e$ and $K = e\hat{R}e \cap R$. In general, it is too much to hope that $e\hat{R}e = \hat{K}$, since it is possible that K = 0 for some nonzero $e \in \hat{R}$. Nevertheless, under the assumption that \hat{R} is also a left quotient ring of R, or in case e is a primitive idempotent satisfying $e\hat{R}e \cap R \neq 0$, we establish (Theorem 3) that K has vanishing right singular ideal, and that $e\hat{R}e = \hat{K}$ (= the maximal right quotient ring of K.) In any case, for any nonzero idempotent $e \in \hat{R}$, $e\hat{R}e$ is the maximal right quotient ring of eRe.

Since we are not restricting ourselves to rings with identity, we say

Presented to the Society, August 30, 1963; received by the editors April 29, 1964 and, in revised form, August 1, 1964.

¹ Part of this paper was presented at the Stockholm International Congress, 1962, under the title Classical and maximal quotient rings.

³ The authors wish to acknowledge partial support by the National Science Foundation.

that an arbitrary (right) module M_R over a ring R is injective in case it possesses the following property: if A_R is any module, and if B_R is any submodule, then any homomorphism $B_R \rightarrow M_R$ can be extended to a homomorphism $A_R \rightarrow M_R$. In case R has an identity element, then a unital module M_R is u-injective in case it has the property above with A_R ranging over all unital modules. It is easy to see that a unital module M_R is injective if and only if it is *u*-injective (cf. Faith-Utumi [1]). Baer's criterion (loc. cit.) states that a unital module M_R is injective if and only if it has the following property: If f is any module homomorphism of a right ideal I of R into M, then there exists $m \in M$ such that $f(x) = mx \forall x \in I$. Call this latter property of a module M_R Baer's condition. It is known (loc. cit.) that if M_R is an arbitrary injective module, then it satisfies Baer's condition. Accordingly, if S is any ring which is right self-injective, the identity map $x \rightarrow x$ can be performed by a left multiplication by an element $e \in S$ which is patently a left identity element of S. If S is left-faithful, any left identity is two-sided. In particular, any semiprime right self-injective ring possesses an identity element. We use this fact below.

THEOREM 1. If S is semiprime and right self-injective, then for any idempotent $e \in S$, eSe is semiprime and right self-injective.

PROOF. Let I be any right ideal of eSe which is nilpotent of index 2. Then $(IS)^2 = (IS)(IS) = (IeS)(eIS) = [I(eSe)]IS \subseteq I^2S = 0$. Thus, IS is a nilpotent right ideal of S, whence IS = 0 and I = 0. Since eSe does not contain nilpotent right ideals of index 2, it follows that eSe is semiprime.

Now let I be any right ideal of eSe, let $x = \sum_{1}^{n} x_{i}s_{i}$, $x_{i} \in I$, $s_{i} \in S$, $i = 1, \dots, n$ be any element of IS. Let $f \in \text{Hom}_{eSe}(I, eSe)$, and let T denote the set of all elements $\sum_{1}^{n} f(x_{i})r_{i} \in \sum_{1}^{n} f(x_{i})S$, $r_{i} \in S$, i = 1, \dots , n, such that $\sum_{1}^{n} x_{i}r_{i} = 0$. Clearly T is a right ideal of S, and $T \subseteq \sum_{1}^{n} f(x_{i})S \subseteq eS$. Now if $t = \sum_{1}^{n} f(x_{i})r_{i} \in T$, then

$$te = \left[\sum_{i=1}^{n} f(x_i)r_i\right]e = \sum_{i=1}^{n} \left[f(x_i)e\right]r_ie = \sum_{i=1}^{n} f(x_i)(er_ie)$$
$$= \sum_{i=1}^{n} f(x_ier_ie) = f\left(\sum_{i=1}^{n} x_ir_ie\right) = f(0) = 0.$$

Thus $T^2 = (eT)^2 = 0$, and T = 0, since S is semiprime. It follows that $x = \sum_{i=1}^{n} x_i s_i = 0$ implies that $\sum_{i=1}^{n} f(x_i) s_i = 0$, so that the correspondence

$$f': x \to \sum_{i=1}^{n} f(x_i) s_i$$

defined for any $x \in IS$, is an element of $\operatorname{Hom}_S(IS, S)$. Since S_S is injective, and S is semiprime, S has an identity element, so S_S satisfies Baer's condition. Accordingly, there exists $m \in S$ such that $f'(x) = mx \forall x \in IS$. In particular, if $x \in I$, then x = xe, so that f'(x) = f(x)e = f(x). Thus, $f(x) = (eme)x \forall x \in I$. Since $eme \in eSe$, this shows that $(eSe)_{eSe}$ satisfies Baer's condition, and eSe is therefore right self-injective.

The proof of the next theorem needs some facts about essential and rational extensions, and the proofs of these may be found in Findlay-Lambek [1] and Johnson-Wong [1]. Recall that M_R is an essential extension of a submodule N_R in case each nonzero submodule of M_R has nonzero intersection with N_R ; we symbolize this by $(M \nabla N)_R$; $R(M \nabla N)$ denotes the right-left symmetry for a left module RM. Then N_R is an essential submodule of M_R . An essential left ideal I of R is a left ideal such that $R \nabla I$.

The singular submodule $Z(M_R)$ is defined by:

 $Z(M_R) = \{x \in M \mid xI = 0 \text{ for some essential right ideal } I \text{ of } R\}.$

We let $Z_r(R)$ denote $Z(R_R)$; it is an ideal, called the *right singular ideal of R*.

A module M_R is rational over a submodule N_R in case it has the following property: if P is any module satisfying $M \supseteq P \supseteq N$, and if $f \in \text{Hom}_R(P, M)$, then f = 0 if and only if f(N) = 0. We let $(M \nabla N)_R$ denote a rational extension M of N. Any rational extension is essential; moreover:

If $Z(N_R) = 0$, then $(M \nabla N)_R$ if and only if $(M \nabla N)_R$.

We shall use the following characterization of rational extensions: $(M \nabla N)_R$ if and only if for each pair $x, y \in M$ with $y \neq 0$, there exist $r \in R$ and an integer n such that

$$xr + xn \in N$$
 and $yr + yn \neq 0$.

We also need the following facts about quotient rings (Johnson [2]): Let R be such that $Z_r(R)=0$, and adopt the notation of the introduction. For each right ideal I of R, let $\overline{I}=\widehat{I}_R\cap R$. Then \overline{I} is the unique maximal essential extension of I_R contained in R; I is a closed right ideal of R in case $I=\overline{I}$. The totality $C_r(R)$ of closed right ideals of R is a complete lattice, and $C_r(\widehat{R})$ is isomorphic $C_r(R)$ under the contraction map $A \to A \cap R$. From what we already have said, $C_r(\widehat{R})$ consists of the principal right ideals of \widehat{R} .

THEOREM 2. Let R be a semiprime ring such that $Z_{\tau}(R) = 0$, let I be any right ideal of R, let \hat{I}_R denote the principal right ideal of \hat{R} generated by I, let $\Gamma = \operatorname{Hom}_R(I, I)$, and let $\Delta = \operatorname{Hom}_{\hat{R}}(\hat{I}_R, \hat{I}_R)$. Then $Z_{\tau}(\Gamma) = Z_{\tau}(\Delta) = 0$, and $\Delta = \hat{\Gamma}$ (=the maximal right quotient ring of Γ).

PROOF. Set $S = \hat{R}$. As remarked above, \hat{I}_R is the injective hull of I_R contained in S_R , and is the principal right ideal of S generated by I. Since S is regular, $\hat{I}_R = eS$, where $e = e^2 \in S$.

We first show that $\Delta = \operatorname{Hom}_S(\widehat{I}_R, \widehat{I}_R)$ coincides with $\Omega = \operatorname{Hom}_R(\widehat{I}, \widehat{I})$. Clearly $\Omega \supseteq \Delta$. Conversely if $f \in \Omega$, and if $r \in \widehat{I}_R \cap R = \overline{I}$, then f(r) = f(e)r. If $x \in \widehat{I}_R$, then $x_R = \{t \in R \mid xt \in I\}$ is an essential right ideal of R. Now if $t \in x_R$, then

$$f(x)t = f(xt) = f(e)xt,$$

that is, (f(x)-f(e)x)t=0. Thus, $[f(x)-f(e)x]x_R=0$. Since \hat{I}_R has zero singular submodule, we conclude that $f(x)=f(e)x \forall x \in \hat{I}_R$, and then clearly $f \in \Delta$. Thus establishes $\Omega = \Delta$.

Since \hat{I}_R is the injective hull of I_R , it follows that each $\gamma \in \Gamma$ has an extension $\hat{\gamma} \in \Delta = \Omega$, and $\hat{\gamma}$ is unique, since \hat{I}_R is rational over I_R . Clearly $\{\hat{\gamma} \in \Delta \mid \gamma \in \Gamma\}$ is a subring of Δ isomorphic to Γ under $\gamma \leftrightarrow \hat{\gamma}$. Henceforth, consider Γ as a subring of Δ .

Now Δ is isomorphic to the ring eSe. If I_L denotes the totality of left multiplications a_L of I by elements $a \in I$,

$$a_L: x \to ax \qquad x \in I$$

then I_L is a subring of Γ , and the natural isomorphism $\Delta \cong eSe$ maps I_L onto eIe and maps Γ onto a subring Γ_e of eSe. Since $\Gamma_e \supseteq eIe$, in order to show that $(eSe \nabla \Gamma_e)_{\Gamma_e}$, it suffices to show that $(eSe \nabla eIe)_{eIe}$.

Now let $0 \neq \delta \in eSe$. Since $(eS \nabla I)_R$, there exists $r \in R$ such that $0 \neq \delta r \in I$. Since $\delta r = \delta(er)$, it follows that $er \neq 0$. By the same reasoning, since $(eS \nabla I)_R$, there exists $s \in R$, $n \in \mathbb{Z}$, such that $u = er(s+n) \in I$, and $w = \delta r(s+n) \neq 0$. Since $\delta r \in I$, it follows that $w \in I$. Since R is semiprime, R is left-faithful, hence $wR \neq 0$ and also $(wR)^2 \neq 0$. Therefore, one can choose $t \in R$ such that w' = wt satisfies $w'' = w'e \neq 0$. Then $w' = \delta u'$, where $u' = ut \in I$ and $w' \in I$, and

$$0 \neq w'' = \delta u''$$

with $u'' = u'e \in eIe$ and $w'' \in eIe$. Thus, $(eSe \nabla eIe)_{eIe}$ as asserted. Hence eSe is a right quotient ring of Γ_e , and Δ is a right quotient ring of Γ . Now S is regular (hence semiprime), so that $\Delta = eSe$ is right self-injective by Theorem 1. Thus, Δ is a maximal right quotient ring of Γ . Since $\Delta(\cong eSe)$ is regular, $Z_r(\Gamma) = Z_r(\Delta) = 0$.

THEOREM 3. Let R be any semiprime ring satisfying $Z_r(R) = 0$, and let e be any idempotent in $S = \hat{R}$. Then:

- (1) $eSe = \hat{K}$, where K = eRe.
- (2) If S is also a left quotientring of R, then $eSe = \hat{R}$, where $K = eSe \cap R$, and eSe is also a left quotient ring of K.

(3) If e is a primitive idempotent, and if $eSe \cap R \neq 0$, then eSe is the right quotient field of $K = eSe \cap R$.

PROOF. Let $B = (eS \cap R) + (1-e)S \cap R$. The lattice isomorphism $C_r(\hat{R}) \cong C_r(R)$ implies that

$$[eS \nabla eS \cap R]_R$$
 (resp. $[(1-e)S\nabla(1-e)S \cap R]_R$),

and it follows that $(S \nabla B)_R$. For each $x \in S$, $x_B = \{b \in B \mid xb \in B\}$ is a right ideal of B, and $(R \nabla x_B)_R$.

Now choose $\delta \in eSe$ and $\delta \neq 0$. Since δ_B is an essential right ideal of R, then $\delta \delta_B \neq 0$ (since $Z(S_R) = Z(R_R) = 0$). By semiprimeness of R, we see that $(\delta \delta_B)^2 \neq 0$, so that $\delta \delta_B e \neq 0$. Hence we can choose $b \in \delta_B \subseteq B$ such that $\delta b e \neq 0$. (Note that $eb \in eS \cap R$.)

Case (1). Now $\delta b \in R$, and $b \in R$, and $\delta be = \delta(ebe) = e(\delta b)e$. Thus $0 \neq \delta(ebe) \in eRe$ with $ebe \in eRe$. This shows that eSe is a right quotient ring of eRe.

Case (2). Since S is a regular ring which is both a right and left quotient ring of R, necessarily $Z_l(R) = 0$. Then $_RS$ is a rational extension of $_RR$, and, moreover, $_R(Se)$ is a rational extension of $_R(Se \cap R)$. Now the correspondence $x \to x\delta be \forall x \in Se$ is an element $f \in \text{Hom}_R(Se, Se)$, and $f \neq 0$ since $e(\delta be) = \delta be \neq 0$. It follows that $f(Se \cap R) \neq 0$, that is, that $(Se \cap R)\delta be \neq 0$ and $(Se \cap R)\delta b \neq 0$. By the semiprimeness of R, $[(Se \cap R)\delta b]^2 \neq 0$, and so $\delta b(Se \cap R) \neq 0$. Hence choose $u \in Se \cap R$ such that $\delta bu \neq 0$. Since b, δb , $u \in R$, then also δbu , $bu \in R$, and

$$\delta bu = (e\delta)b(ue) = e(\delta bu)e \in eSe \cap R = K.$$

Since $eb \in eS \cap R$, and $u \in Se \cap R$, then $k = ebu \in K$, so that $0 \neq \delta k$ = $\delta bu \in K$, with $k \in K$. Since δ was an arbitrary nonzero element of eSe, this proves that eSe is a right quotient ring of K.

Case (3). eSe is a division ring and Se is a right vector space over eSe. Since $Se \cap R \neq 0$, and since $0 \neq \delta be \in eSe$, it follows that $(Se \cap R)\delta be \neq 0$, and the rest of the proof proceeds as in the proof of (2).

In all cases we have deduced that eSe is a right quotient ring of K without resource to the fact that the right quotient ring S of R is maximal. Now in Case (2), $Z_l(R) = 0$ is a consequence of the fact that S is a regular ring which is a left quotient ring of R. Hence, by symmetry, we conclude that eSe is a left quotient ring of K in this case.

Since eSe is regular along with S, and since eSe is right self-injective by Theorem 1, we conclude that $eSe = \hat{K}$ in all cases, completing the proof.

Remark. It can be shown that K in (2) need not be semiprime.

We construct an example which shows that (2) and (3) of Theorem 3 fail under a weakening of the hypothesis.

Let K be a right Ore domain which is not a left Ore domain, and let k_1 , k_2 be nonzero elements of K such that $Kk_1 \cap Kk_2 = 0$.

If D denotes the right quotient division ring of K, then $S=D_2$, the full ring of all 2×2 matrices over D, is the classical, and maximal, right quotient ring of $R=K_2$. Let $\{e_{ij}|i,j=1,Z\}$ denote matrix units in S, let $a=k_1^{-1}e_{11}+k_2^{-1}e_{12}$, and suppose $b\in S$ is such that $ba\in R$. Then $b=\sum_{i,j=1}^{2}c_{ij}e_{ij}$, with $c_{ij}\in D$, i,j=1,2, and

$$ba = c_{11}k_1^{-1}e_{11} + c_{11}k_2^{-1}e_{12} + c_{21}k_1^{-1}e_{21} + c_{21}k_2^{-1}e_{22}.$$

Since $ba \in K_2 = R$, necessarily

$$c_{11}k_1^{-1}$$
, $c_{11}k_2^{-1}$, $c_{21}k_1^{-1}$, $c_{21}k_2^{-1} \in K$,

and then c_{11} , $c_{21} \in Kk_1 \cap Kk_2$. Since $Kk_1 \cap Kk_2 = 0$, $c_{11} = c_{22} = 0$, so necessarily ba = 0. This shows that $Sa \cap R = 0$. Now $e = k_1a = e_{11} + k_1k_2^{-1}e_{12}$ belongs to Sa, and $e = e^2$. It is easy to see that eSe is a division ring (or equivalently, that Se is a minimal left ideal of S), while $eSe \cap R = 0$. In particular, eSe is not a quotient ring of $eSe \cap R$.

In view of Theorem 3, it is of interest to consider conditions which imply that the maximal right quotient ring is also a left quotient ring. The general question has been extensively treated by Utumi [1].

REFERENCES

- C. FAITH AND Y. UTUMI
- 1. Quasi-injective modules and their endomorphism rings, Arch. Math. 15 (1964), 166-174.
 - 2. On noetherian prime rings, Trans. Amer. Math. Soc. 114 (1965), 53-60.
- G. FINDLAY AND J. LAMBEK
 - 1. A generalized ring of quotients. I, Canad. Math. Bull. 1 (1958), 77-85.
- N. JACOBSON
- 1. Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math. Soc., Providence, R. I., 1956.
- R. E. Johnson
- 1. The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
- 2. Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385-1392.
- R. E. Johnson and E. T. Wong
 - 1. Self-injective rings, Canad. Math. Bull. 2 (1959), 167-173.
- Y. UTUMI
- 1. On rings of which any one-sided quotient rings are two-sided, Proc. Amer. Math. Soc. 14 (1963), 141-147.

Rutgers, The State University,
Osaka Women's University, Osaka, Japan and
The University, Leeds, England