MAXIMAL QUOTIENT RINGS!
CARL FAITH AND YUZO UTUMI?

Let R be an associative ring in which an identity element is not
assumed. A right quotient ring of R is an overring S such that for
each a&€S there corresponds r&ER such that ar€R and ar 0. A
theorem of R. E. Johnson [1] states that R possesses a right quotient
ring S which is a (von Neumann) regular ring if and only if R has
vanishing right singular ideal. In this case R possesses a unique (up
to isomorphism over R) maximal right quotient ring S, and S is regu-
lar and right self-injective (Johnson-Wong [1]). It is easy to see that
S is the injective hull of R, considering both rings as right R-modules
in the natural way. Thus, each right ideal I of R has an m]ectlve
hull I contained in S. In this notation, S= Rz, and we use R to
denote the maximal right quotient ring of R hereafter. By the results
of Johnson [2], I’z can be characterized in two ways:

(a) I is the unique maximal essential extension of I contained in
the right R-module R.

(b) Ik is the principal right ideal of R generated by I.

Since I is therefore a right ideal of R, A=Homg (Iz, I r) is de-
fined. Setting I'=Homp (I, I), one of our main results (Theorem 2)
states that '=Homg (I'z, Tz) =A. This means that T has vamshlng
right singular ideal, and that A is the maximal right quotient ring
of T.

Since I is a principal right ideal in the regular ring R, there exists
an idempotent eE R such that Tr=¢R. Then, of course, A=~2¢Re, and
it is natural to mvestlgate the relationship between eRe and K
=eReNR. In general, it is too much to hope that eRe= K, since it
is possible that K =0 for some nonzero e€ R. Nevertheless, under the
assumption that R is also a left quotient ring of R, or in case ¢is a
primitive idempotent satisfying eReN\R 0, we establish (Theorem
3) that K has vanishing right singular ideal, and that eRe= K (=the
maximal rlght quotlent ring of K.) In any case, for any nonzero idem-
potent e€ R, eRe is the maximal right quotient ring of eRe.

Since we are not restricting ourselves to rings with identity, we say
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that an arbitrary (right) module Mz over a ring R is injective in case
it possesses the following property: if Ag is any module, and if Bg
is any submodule, then any homomorphism Bz— Mg can be extended
to a homomorphism Ar—Mpz. In case R has an identity element,
then a unital module M is u-injective in case it has the property
above with A ranging over all unital modules. It is easy to see that
a unital module My is injective if and only if it is u-injective (cf.
Faith-Utumi [1]). Baer's criterion (loc. cit.) states that a unital
module M is injective if and only if it has the following property:
If f is any module homomorphism of a right ideal I of R into M, then
there exists m © M such that f(x) = maxWx & I. Call this latter property
of a module My Baer's condition. It is known (loc. cit.) that if Mz
is an arbitrary injective module, then it satisfies Baer’s condition.
Accordingly, if Sis any ring which is right self-injective, the identity
map x—x can be performed by a left multiplication by an element
e S which is patently a left identity element of .S. If S is left-faith-
ful, any left identity is two-sided. In particular, any semiprime right
self-injective ring possesses an identity element. We use this fact
below.

THEOREM 1. If S is semiprime and right self-injective, then for any
idempotent e S, eSe is semiprime and right self-injective.

PRrooF. Let I be any right ideal of eSe which is nilpotent of index
2. Then (IS)2=(IS)(IS)=(IeS)(elS)=[I(eSe)]ISCI:S=0. Thus,
IS is a nilpotent right ideal of S, whence IS=0 and I=0. Since
eSe does not contain nilpotent right ideals of index 2, it follows that
eSe is semiprime.

Now let I be any right ideal of eSe, let x = Z’l' XS5 x:E1, 5;E S,
1=1, - - -, n be any element of IS. Let f&Hom,gs.(I, eSe), and let T
denote the set of all elements Y 7 f(x.)r.€ X7 f(x.)S, r:ES, i=1,

-, m, such that Y *x7,=0. Clearly T is a right ideal of S, and
TC Y *f(x;)SCeS. Now if t= D 2 f(x,)r;€ T, then

le = [ ? f(x;)ra] e = Z:: [f(x;)e]r,-e = Z:: f(x:) (erse)
= Z::f (xierie) = f ( z::x.-r;e> = f(0) = 0.

Thus T2=(eT)2=0, and T =0, since S is semiprime. It follows that
x= Y " x;5,=0 implies that Y 7 f(x;)s;=0, so that the correspon-
dence

fliz— é:f(x.')s;,
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defined for any x €S, is an element of Homg(ZS, S). Since Ss is in-
jective, and S is semiprime, S has an identity element, so Sg satisfies
Baer’s condition. Accordingly, there exists m&S such that f'(x)
=mx\¥xCIS. In particular, if k€I, then x=xe, so that f'(x) =f(x)e
=f(x). Thus, f(x) =(eme)xMx&I. Since emeCeSe, this shows that
(eSe).s. satisfies Baer’s condition, and eSe is therefore right self-
injective.

The proof of the next theorem needs some facts about essential and
rational extensions, and the proofs of these may be found in Findlay-
Lambek [1] and Johnson-Wong [1]. Recall that My is an essential
extension of a submodule N in case each nonzero submodule of Mg
has nonzero intersection with Ng; we symbolize this by (M VN)g;
r(M VN) denotes the right-left symmetry for a left module M.
Then Nz is an essential submodule of M g. An essential left ideal I of R
is a left ideal such that RVI.

The singular submodule Z(Mp) is defined by:

Z(Mz) = {x€EM | xI = 0 for some essential right ideal I of R}.

We let Z.(R) denote Z(Rg); it is an ideal, called the right singular
ideal of R.

A module M is rational over a submodule Np in case it has the
following property: if P is any module satisfying M2DP2DN, and if
fEHomg(P, M), then f=0 if and only if f(N) =0. We let (M VN)r
denote a rational extension M of N. Any rational extension is essen-
tial; moreover:

If Z(Ng) =0, then (M V¥ N)g if and only if (M VN)z.

We shall use the following characterization of rational extensions:

(MVN)xif and only if for each pair x, y&E M with y7#0, there exist
rER and an integer # such that

xr+a2n &N and yr+ yn = 0.

We also need the following facts about quotient rings (Johnson
[2]): Let R be such that Z,(R) =0, and adopt the notation of the in-
troduction. For each right ideal I of R, let T=IzNR. Then T is the
unique maximal essential extension of Ip contained in R; I is a
closed right ideal of R in case I=1. The totality C,(R) of closed right
ideals of R is a complete lattice, and C,(R) is isomorphic C,(R) under
the contraction map A—ANR. From what we already have said,
C.(R) consists of the principal right ideals of R.

THEOREM 2. Let R be a semiprime ring such that Z,(R) =0, let T
be any right ideal of R, let I denote the principal right ideal of R gener-
ated by I, let T =Hompg(I, I), and let A=Homg(Ir, Iz). Then Z,(T)
=Z,(A) =0, and A=T1 (=the maximal right quotient ring of T').
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PRrOOF. Set S=R. As remarked above, I is the injective hull of
Ik contained in Sg, and is the principal right ideal of S generated by
I. Since S is regular, [r=eS, where e=¢?E€ S.

We first show that A =Homg(Z, Iz) coincides with @ =Homg(J, ).
Clearly @DA. Conversely if fEQ, and if rEIzNR=1T, then f(r)
=f(e)r. If xC I, then xz= {t€R|xtE I} is an essential right ideal of
R. Now if t&xg, then

f@)t = f(=t) = f(e)t,

that is, (f(x) —f(e)x)t=0. Thus, [f(x) —f(e)x]xz=0. Since Iz has zero
singular submodule, we conclude that f(x) = f(e)xVfo g, and then
clearly fEA. Thus establishes Q=A.

Since I is the injective hull of Ig, it follows that each y&T has
an extension §CA =, and 4 is unique, since Iz is rational over Ix.
Clearly {'?EAI 'yEI‘} is a subring of A isomorphic to I under y<4.
Henceforth, consider T' as a subring of A.

Now A is isomorphic to the ring eSe. If I, denotes the totality of
left multiplications a, of I by elements ¢ &1,

aL: ¥ — ax x € I,

then I is a subring of T', and the natural isomorphism A=2eSe maps
I onto ele and maps I' onto a subring T', of eSe. Since T'.Dele, in
order to show that (eSe VT'.)r,, it suffices to show that (eSe Vele).r..

Now let 0#8CeSe. Since (eS VI)g, there exists &R such that
0#86rcI. Since 6r =6(er), it follows that er 0. By the same reason-
ing, since (eSWI)g, there exists s€R, nE Z, such that u =er(s+n)E1,
and w=208r(s+n)#0. Since dr& 1, it follows that w&I. Since R is
semiprime, R is left-faithful, hence wR#0 and also (wR)?#0. There-
fore, one can choose {&R such that w' =wt satisfies w'' =w'e#0.
Then w' =8u’, where ' =ut&I and w' &1, and

05w’ = du’,

with %" =u'eCele and w''Cele. Thus, (eSeVele)a, as asserted.
Hence eSe is a right quotient ring of T';, and A is a right quotient ring
of I'. Now S is regular (hence semiprime), so that A =eSe is right self-
injective by Theorem 1. Thus, A is a maximal right quotient ring of
T. Since A(=2eSe) is regular, Z,(I") =Z,.(A) =0.

THEOREM 3. Let R be any semiprime ring satisfying Z,(R) =0, and
let e be any idempotent in S=R. Then:

(1) eSe= K, where K =eRe.

(2) If Stisalsoaleft quotientring of R,then eSe = K, where K =eSeNR,
and eSe is also a left quotient ring of K.
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(3) If e is a primitive idempotent, and if eSeMN\R#0, then eSe is the
right quotient field of K =eSeN\R.

PI{OOF. Let B=(eSNR)+(1—¢e)SNR. The lattice isomorphism
C.(R)=2C,(R) implies that

1eS VeS M R]g (resp. [(1 — e)SV(1 — €)S N R]z),

and it follows that (S VB)z. For each xE S, xz= {bGB[ beB} isa
right ideal of B, and (R Vx3)z.

Now choose §EeSe and §%0. Since 8p is an essential right ideal of
R, then 88570 (since Z(Sg) =Z(Rg) =0). By semiprimeness of R, we
see that (865)270, so that 8dze#0. Hence we can choose b&dz B
such that 8be#0. (Note that ebEeSMNR.)

Case (1). Now 6bER, and bER, and 8be=20(ebe) =e(8b)e. Thus
0 d(ebe) EeRe with ebe&eRe. This shows that eSe is a right quotient
ring of eRe.

Case (2). Since S is a regular ring which is both a right and left
quotient ring of R, necessarily Z;(R) =0. Then S is a rational exten-
sion of gR, and, moreover, r(Se) is a rational extension of zr(SeMR).
Now the correspondence x — xdbeWx € Se is an element
fE&Hompg(Se, Se), and f#0 since e(dbe) =08be=0. It follows that
f(SeMR)#0, that is, that (Se/\R)dbe=0 and (SeM\R)8b#0. By the
semiprimeness of R, [(SeM\R)db]25£0, and so 8b(SeMR)#0. Hence
choose #& SeMR such that 8bu 0. Since b, b, uER, then also dbu,
buER, and

Sbu = (ed)b(ue) = e(dbu)e E eSe R = K.

Since ebEeSNR, and uESeNR, then k=ebuE K, so that 006k
=8buc K, with k€ K. Since § was an arbitrary nonzero element of
eSe, this proves that eSe is a right quotient ring of K.

Case (3). eSe is a division ring and Se is a right vector space over
eSe. Since SeMNR#0, and since 05%8be S eSe, it follows that (Se/MN\R)dbe
#0, and the rest of the proof proceeds as in the proof of (2).

In all cases we have deduced that eSe is a right quotient ring of
K without resource to the fact that the right quotient ring S of R is
maximal. Now in Case (2), Z;(R) =0 is a consequence of the fact that
S is a regular ring which is a left quotient ring of R. Hence, by sym-
metry, we conclude that eSe is a left quotient ring of K in this case.

Since eSe is regular along with S, and since eSe is right self-injec-
tive by Theorem 1, we conclude that eSe= K in all cases, completing
the proof.

REMARK. It can be shown that K in (2) need not be semiprime.
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We construct an example which shows that (2) and (3) of Theorem
3 fail under a weakening of the hypothesis.

Let K be a right Ore domain which is not a left Ore domain, and
let &y, k; be nonzero elements of K such that Kk Kk, =0.

If D denotes the right quotient division ring of K, then S=D,,
the full ring of all 2 X2 matrices over D, is the classical, and maximal,
right quotient ring of R=Kj. Let {e,;|4,j=1, Z} denote matrix units
in S, let a=Fki'en+kilewn, and suppose bES is such that baER.
Then b= Z?J-l Cij€ij, with C,’,’GD, 'i, j= 1, 2, and

ba = cukilen + cukiles + cakilear + cakiles.
Since ba € K =R, necessarily
cukily cukit, cakil, cuki! € K,

and then ¢, caEKkiNKEk, Since Kk1nKk2=0, cu=cp=0, so
necessarily ba=0. This shows that SeNR=0. Now e=ka=en
+kikiless belongs to Sa, and e=e¢2. It is easy to see that eSe is a divi-
sion ring (or equivalently, that Se is a minimal left ideal of .S), while
eSeMNR=0. In particular, eSe is not a quotient ring of eSeNR.

In view of Theorem 3, it is of interest to consider conditions which
imply that the maximal right quotient ring is also a left quotient ring.
The general question has been extensively treated by Utumi [1].
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