REFLEXIVE SEMIGROUPS

R. O. FULP AND PAUL HILL

By a character of a semigroup S we mean a homomorphism χ of S into the multiplicative semigroup of complex numbers with the property that $\chi(1) \neq 0$ if S has an identity element 1. We denote by S^* the semigroup of all characters of S with respect to pointwise multiplication, and S^{**} is the character semigroup of S^* . In [3] Warne and Williams raised the question: when are S and S^{**} isomorphic? There is, of course, always a natural homomorphism of S into S^{**} and we interpret their question to mean: when are S and S^{**} naturally isomorphic? The purpose of this note is to answer the latter question. The natural homomorphism that we have referred to is the mapping $S \rightarrow \psi_s$ where $\psi_s(\chi) = \chi(s)$ for each χ in S^* .

DEFINITION. A semigroup S is said to be *reflexive* if S and S^{**} are naturally isomorphic, that is, if $s \rightarrow \psi_{\bullet}$ is an isomorphism from S onto S^{**} .

It is well known (see, for example, [1]) that a commutative semigroup S is an inverse semigroup if and only if S is a semilattice of groups.

LEMMA 1. For any semigroup S, the semigroup S^* is a commutative inverse semigroup with identity.

PROOF. These properties of S^* are inherited naturally from the multiplicative semigroup of complex numbers.

COROLLARY 1. Any reflexive semigroup is a commutative inverse semigroup with identity.

THEOREM 1. A semigroup S is reflexive if and only if S is a reflexive semilattice of reflexive groups.

PROOF. We may assume that S is a semilattice E of commutative groups $\{G_e\}_{e\in E}$ where E is the set of idempotent elements of S. Let f denote the restriction to E of the natural mapping of S into S^{**} . Let g denote the natural mapping of E into E^{**} . Define h from E^{**} into S^{**} by: $h(\theta) = \pi$ where $\pi(\chi) = \theta(\chi \mid E)$. Then h is an isomorphism from E^{**} onto the set F of idempotents of S^{**} and $f = h \cdot g$. Thus f is an isomorphism from E onto E^{**} , that is, if and only if E is reflexive.

Presented to the Society, August 25, 1964; received by the editors July 8, 1964.

For each $e \in E$ the diagram

is commutative where: f is the restriction to G_{ϵ} of the natural map from S into S^{**} , g is the natural map from G_{ϵ} into G_{ϵ}^{**} , and $h(\theta) = \pi$ where

$$\pi(\chi) = \begin{cases} \theta(\chi \mid G_e) & \text{if } \chi(e) \neq 0, \\ 0 & \text{if } \chi(e) = 0. \end{cases}$$

Moreover, h is an isomorphism from G_{ϵ}^{**} onto $H_{f(\epsilon)}$ where $H_{f(\epsilon)}$ is the maximal subgroup of S^{**} having $f(\epsilon)$ as an identity element. Hence f is an isomorphism from G_{ϵ} onto $H_{f(\epsilon)}$ if and only if G_{ϵ} is reflexive. The theorem now follows.

LEMMA 2. Suppose that E is a commutative idempotent semigroup. Necessary and sufficient conditions that E be reflexive are that E have an identity element and that every nonvoid subset of E contain a minimal element and a maximal element.

PROOF. The sufficiency was shown in [3]. It follows from Corollary 1 that it is necessary for E to have an identity element.

Assume that there is an infinite descending chain in E,

$$e_1 > e_2 > \cdots > e_n > \cdots$$

Define

$$E_1^* = \{ \chi \in E^* \mid \chi(e_i) = 1 \text{ for } i = 1, 2, 3, \cdots \}.$$

The complement of E_1^* in E^* is a prime ideal of E^* . Thus the characteristic function π of the subset E_1^* of E^* is a character of E^* , so π is an element of E^{**} . Suppose that there is an element $e \in E$ such that $\chi(e) = \pi(\chi)$ for each $\chi \in E^*$. Then for each $\chi \in E^*$, we have that $\chi(e) = 1$ if and only if $\chi(e_i) = 1$ for each i. However, it is easy to show that this is not the case by considering the characteristic functions of the following subsets of E:

$$E_0 = \{x \in E \mid x \ge e_i \text{ for some } i\},$$

$$E_i = \{x \in E \mid x \ge e_i \text{ for } i \ge 1\}.$$

We conclude that there is no element $e \in E$ which maps π under

the natural map and that E is not reflexive if E contains an infinite descending chain.

A rather similar argument shows that if E is reflexive then E cannot contain an infinite ascending chain

$$e_1 < e_2 < \cdots < e_n < \cdots$$

In this case, we would define

$$E_1^* = \{ \chi \in E^* \mid \chi(e_i) = 1 \text{ for all but a finite number of } i \}$$

and observe that no element of E maps onto the characteristic function π of E_1^* . Thus for E to be reflexive it is necessary for each non-void subset of E to contain a minimal element and a maximal element.

COROLLARY 2. A semilattice is reflexive if and only if it is a (complete) lattice with no infinite chain.

The following lemma follows from the results of [2].

LEMMA 3. A group is reflexive if and only if it is finite and commutative.

We have now proved the following

THEOREM 2. A semigroup is reflexive if and only if it is a lattice L of finite commutative groups where L has no infinite chain.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961.
- 2. L. Fuchs, On character groups of discrete abelian groups, Acta. Math. Acad. Sci. Hung. 10 (1959), 133-140.
- 3. R. J. Warne and L. K. Williams, Characters on inverse semigroups, Czechoslovak Math. J. 11 (1961), 150-155.

GEORGIA STATE COLLEGE AND EMORY UNIVERSITY