
REFLEXIVE SEMIGROUPS

R. O. FULP AND PAUL HILL

By a character of a semigroup 5 we mean a homomorphism x of 5

into the multiplicative semigroup of complex numbers with the prop-

erty that x(l)^0 if 5 has an identity element 1. We denote by 5*

the semigroup of all characters of 5 with respect to pointwise multi-

plication, and 5** is the character semigroup of 5*. In [3] Warne

and Williams raised the question: when are 5 and 5** isomorphic?

There is, of course, always a natural homomorphism of 5 into 5**

and we interpret their question to mean: when are 5 and 5** natu-

rally isomorphic? The purpose of this note is to answer the latter

question. The natural homomorphism that we have referred to is the

mapping s-^xp, where y¡/,(x) =x(s) for each x in 5*.

Definition. A semigroup 5 is said to be reflexive if 5 and 5** are

naturally isomorphic, that is, if 5—»i/', is an isomorphism from 5 onto

S**.
It is well known (see, for example, [l ]) that a commutative semi-

group 5 is an inverse semigroup if and only if 5 is a semilattice of

groups.

Lemma 1. For any semigroup S, the semigroup 5* is a commutative

inverse semigroup with identity.

Proof. These properties of 5* are inherited naturally from the

multiplicative semigroup of complex numbers.

Corollary 1. Any reflexive semigroup is a commutative inverse

semigroup with identity.

Theorem 1. A semigroup S is reflexive if and only if S is a reflexive

semilattice of reflexive groups.

Proof. We may assume that 5 is a semilattice E of commutative

groups {G,} eeE where E is the set of idempotent elements of 5. Let

/ denote the restriction to E of the natural mapping of 5 into S**.

Let g denote the natural mapping of E into £**. Define h from £**

into 5** by: h(d) =7r where ir(x) =0(x\E). Then h is an isomorphism

from E** onto the set F of idempotents of 5** and/=Ä-g. Thus/ is

an isomorphism from E onto F if and only if g is an isomorphism

from E onto E**, that is, if and only if E is reflexive.

Presented to the Society, August 25, 1964; received by the editors July 8, 1964.

1096



REFLEXIVE SEMIGROUPS 1097

For each eQE the diagram

G. . S**

\/>
G*

is commutative where : / is the restriction to G, of the natural map

from S into S**, g is the natural map from G, into G**, and h(d) =7r

where

7T(x) -Cie(x\G.)  ifxW^o,

if x(e) = 0.

Moreover, h is an isomorphism from G** onto PT/(e) where i?/(,> is

the maximal subgroup of S** having /(e) as an identity element.

Hence / is an isomorphism from Ge onto PT/(«) if and only if G, is

reflexive. The theorem now follows.

Lemma 2. Suppose that E is a commutative idempotent semigroup.

Necessary and sufficient conditions that E be reflexive are that E have

an identity element and that every nonvoid subset of E contain a minimal

element and a maximal element.

Proof. The sufficiency was shown in [3]. It follows from Corollary

1 that it is necessary for E to have an identity element.

Assume that there is an infinite descending chain in E,

ei> et> ■ • ■ > e„>

Define

E* = {x G E* | x(ei) = 1 for i = 1, 2, 3, • • • }.

The complement of E* in E* is a prime ideal of E*. Thus the char-

acteristic function 7T of the subset E* of E* is a character of £*, so ir

is an element of E**. Suppose that there is an element eGP such

that x(fi) —^(x) for each %GP*- Then for each xGP*. we have that

x(e) = 1 if and only if x(e<) = 1 for each i. However, it is easy to show

that this is not the case by considering the characteristic functions of

the following subsets of E :

Eo = {x G E | x = e< for some i},

Et = {xG E\ x =■ et fort è l}.

We conclude that there is no element eGP which maps ir under
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the natural map and that E is not reflexive if E contains an infinite

descending chain.

A rather similar argument shows that if E is reflexive then E can-

not contain an infinite ascending chain

ei < e2 < • ■ • < e„ < • • • .

In this case, we would define

Ei = {x G E* | x(e») = 1 for all but a finite number of i}

and observe that no element of E maps onto the characteristic func-

tion ir of E*. Thus for E to be reflexive it is necessary for each non-

void subset of E to contain a minimal element and a maximal element.

Corollary 2. A semilattice is reflexive if and only if it is a (com-

plete) lattice with no infinite chain.

The following lemma follows from the results of [2].

Lemma 3. A group is reflexive if and only if it is finite and commuta-

tive.

We have now proved the following

Theorem 2. A semigroup is reflexive if and only if it is a lattice L

of finite commutative groups where L has no infinite chain.
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