AN APPROXIMATION THEOREM FOR A
CLASS OF OPERATORS!

G. K. LEAF

It is well known that if Uis a unitary operator in a Hilbert space H,
then the following approximation theorem is an immediate conse-
quence of the spectral representation for the operator U.

THEOREM A. (a) Let {E;: 0= t§27r} denote the family of spectral
projections associated with U; then if €>0 and o, 0= = 2w, are given
and if x is any element in the range of the projection Eqy— E,, we have:

1@ = e<)a] = el

(b) moreover, for this same €, there exists a finite collection of closed
linear manifolds in H such that H is the direct sum of these manifolds;
and in each subspace, U behaves as in part (a).

E. R. Lorch [7] extended this theorem to certain classes of oper-
ators in a reflexive Banach space. The class considered by Lorch
consists of those bounded, invertible operators V for which the norms
of their iterates are restricted by the condition, || V|| =0(1) as ||
tends to infinity.

The author [6] extended the results or Lorch to a somewhat larger
class restricted by the condition, || V#|| =O(|n|). This extension was
made through the use of methods developed by N. Dunford [4], [5].

In the present paper, the result is extended to a much larger class
of operators by using the methods of Harmonic analysis as developed
by A. Beurling [1], J. Wermer [8], Y. Domar [3], and others. It
should be mentioned that this extension might have been possible
through the use of methods developed by F. Wolf [9] in his spectral
theory for operators based on the generalized trigonometric integrals
of S. Bochner. The present class is restricted by the condition,

@) || V|| =0(|#| %) as |»| tends to infinity, for some g>0.

An operator V, defined in a Banach space B, which satisfies condi-
tion (i) is easily seen to have it spectrum on the circumference of the
unit circle. Moreover, the usual operational calculus may be extended
by introducing a certain weighted algebra associated with the se-
quence {||V*|:#=0, +1, - - - }. Such algebras were introduced by
Beurling [1], and later generalized by Wermer and Domar.
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DEFINITION 1. Let p, and d,, n=0,-+1, - - - be sequences of posi-
tive numbers such that p, =1, ppim = pnpm, and p, =d,, where d, is an
even, increasing sequence. Denote by A4, the space of all continuous,
periodic functions f(f) whose Fourier coefficients f, satisfy

:——no pnlfnl <,

When given the norm ||f|| = .. p.|fa|, the space 4, becomes a
commutative Banach algebra under pointwise multiplication More-
over, if p, is further restricted by >, log p./(14+n2) < «, the alge-
bra A4, is regular. In the present application, we take p,,=|| V””; the
relevant conditions satisfied by p, follow directly from the restriction
of polynomial growth on || V|

Using the algebra 4,, an operational calculus may be generated for
V by setting f(V) = >_%. f. V", for such fin 4,. In order to apply the
methods of harmonic analysis, we shall drop down to the space B
and look at the induced map on 4,X B—B defined by foa=f(V)a,
where f belongs to 4, and a to B. The idea of considering the induced
map is an adaptation of a technique developed by Domar in his
study of function algebras over locally compact Abelian groups.

Using the continuity of the mapping (f, a)—f o @, we may associ-
ate with each element a in B a closed subset A(a) of the circumference
of the unit circle defined as the hull of the ideal I(a) = {f€4,: foa
=0}. In addition, for each f in 4,, let A, denote the closure of the
support of f; then the following results are basic (cf. [3]).

LeEmMa 1. (a) A(e) is void if and only if a=0.

(b) For any fin A, and a in B, A(f o a) SA;NA(a).

(c) If f and g belong to A, and f=g in some neighborhood of A(a),
then foa=goa.

The elements ¢ of the adjoint space A} may be identified with the
space of sequences {¢,} for which sup, |¢.| /p. < © by means of the
representation ¢(f) = D,°. fupn; furthermore H¢|| =sup, |@n| /-
With each ¢ in A%, there is associated a pair of functions ®+(z)
=7 ¢z, & (3) = — D o ¢_n2", where ®+ and &~ are defined and
analytic for |z| >1and |z| <1, respectively. Using the pair (®+, )
we may define a closed set o(¢) as the set of points A on the circumfer-
ence of the unit circle for which the pair (&+, $) do not continue
each other across any arc containing the point \ (cf. [2], [8]).

On the other hand we may construct another representation of 4,,
this time as an operator over the Banach space 4} in place of the
space B. In this case the action of f as an operator in 4} will be de-
fined by (f 0 ¢)(g) =¢(fg). With this representation the set A(¢) may
be defined just as was done for the elements of B. In [3] it was shown
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that g(¢) =A(¢). Now for any a in B and e¢* in B*, the sequence
¢.=a*(Vrla) defines an element ¢ in AY. Using the definition of
o(¢) we are led to the usual definition (cf. [5]) of the spectrum o(a)
of an element a in B as the set of points N, |\| =1, such that for
some a* in B*, X belongs to the spectrum of {a*(V"‘la)} as an ele-
ment of 4.

THEOREM 1. For each a in B, o(a) =A(a).

This result is established as follows. Let a be a fixed element in B,
and let ¢4+ denote the element in A% corresponding to the sequence
{a"‘(V"a) } Observe that since (fg) oa=go (foa), we have

N{I(¢u): a* in A:}
= {fin 4,:¢*[go (foa)] = 0 for all gin 4, and a* in A:}
= {fin Ay,igo(foa) = 0forall gin A,,} = I(a).

Hence A(¢qs) CA(a) for every a* in B*; so that if A denotes the
closure of the union of the sets A(¢,+) taken over all a* in B*, then we
have ACA(a). If A were a proper subset, then there would exist a
point ¢, together with a closed neighborhood N of ¢, such that NNA
= . But then NNA(¢.,x) = for every a* in B*. Since A(¢.+)
=hull I(¢.+), we see that if Ay CN and f(t,) #0, then f belongs to
I(¢ar) for all a* in B*. But then f belongs to I(a). Since the point ¢,
belongs to A(a) we have f(¢p) =0, which is a contradiction. Hence,
using the fact that A(¢pq+) =0 (¢er), we have A(a) =A and A =closure
of the union of the sets o(¢.«) taken over all a* in B*. On the other
hand, it is easily seen that ACo(a). Just as before, if A were a proper
subset there would exist a point ¢, in ¢(a) and a closed neighborhood
N of t, such that NNa(¢a+) =& for all a*. But then a*[(t— V)~la]
would be analytic in N for every a* in B*, contradicting the assump-
tion that #, belongs to o(a).

In the following generalized approximation theorem, the role
played by the range of the spectral projections in the case of a
unitary operator is taken over by certain “spectral subspaces” de-
fined in the following way. For each closed subset A of the circum-
ference of the unit circle, set Ms= {a in B:o(a) SA}. Wermer [8]
has shown that the linear manifold {a in B:A,CA} is closed; this,
together with Theorem 1, shows that M, is indeed a subspace.

THEOREM 2. Given any €>0 there exists a §>0 such that for any N
with —w <AN<w and any element a in B which lies in the subpace
L) ={ain B; o(a) S[A\—35, \+35]}

1V = eNal| = ¢ dl.
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Moreover, the space B is spanned by a finite collection of such manifolds.
The proof rests on the following lemma.

LEMMA 2. For any N\ in [—=, w] and any €>0 there exists an n>0
and a function f in A, such that

(i) “f”= 2w pn Ifn' <e, and

(ii) f(8) =e™—e® for |§—N\| <n.

It suffices to find such an f in the case where A=0, since one has
only to set fy(6) =e™f(9—N\), noting that ||fi]| =||f||, to obtain the gen-
eral result. For any a>0, set

f@) =1—¢? for 0] £ q
=0 for | 8] = 2a, with f in C=.

Then |fo| Ko and |fa| <aK:|n|~* for any integer I, where K, and
K; depend on f. Taking /=¢+2 and recalling that p, < M(1+ | n[ 9),
we obtain ||f|| SaK’ for some constant K. Letting 5 =¢/K’ completes
the proof of the lemma.

Now if >0 and N are given, we construct f as in the above lemma
and we set §=7/2. Using Lemma 1(c) we see that if o(a) C[\—3,
A+3], then

foa=(e*—e%oa=(e*— V)a.
Hence
[ = Va|| = |70 d] < dld].

For the second part, we cover the interval [—m, 7] with any finite
collection {Aj};'_l of overlapping intervals each having length equal
to the 6 found in the first part. Over this cover we construct a par-
tition of unity {u;}5., with #;&€ C=. Then for any element a in B we
havea=a;1+as+ - - - +a., wherea;=u; 0 a, and o(a;) CA(x,)No(a)
CA,;. Let \; denote the center of A; and P;(f) =e™i —e®. Then, using
the preceding lemma, there exists an f in 4, such that ||f¢|| <eand
f@=P; in a neighborhood of A;. Thus

[ = Val| = || f9 00| < d[aj.
COROLLARY. If a0, then ¢(a) = {\o} if and only if Va=e™q.
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A NOTE ON NORMAL DILATIONS
ARNOLD LEBOW

I. Introduction. Our purpose is to give certain sufficient conditions
that a normal dilation of an operator be an extension from a reducing
subspace. The first result of this kind, that we know of, is due to
T. Andd [1] who considered compact normal dilations. In this note
we use only assumptions about the nature of the spectrum; neverthe-
less, we are able to recover Andd’s theorem.

Let 4 be an operator on a Hilbert space X. Let P be the orthogonal
projection of X onto a subspace 3C. Let T denote the restriction of
PAP to 3. The operator T is called a compression of A and A is
called a dilation of T. If T™is the compression of A*(n=01,2,3, - - -)
then T is called a strong compression and A a strong dilation. Let X
be a compact subset of the plane containing 0(4) and ¢(7T'), the spec-
tra of 4 and T. The operator 4 is said to be an X-dilation of T if, for
every rational function r(-) which is analytic on X, the operator
r(A4) is a dilation of 7(T). These definitions were introduced by
Halmos. Some other writers use “dilation” to mean what we call
strong dilation. Sz-Nagy uses “projection” for compression. When T
is a strong compression of 4 And6 calls 3¢ a “semi-invariant” sub-
space of 4.

These notions are related to the more familiar concepts of invariant
subspace and reducing subspace as follows. If 3C is an invariant sub-
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