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It is well known that if Uis a unitary operator in a Hilbert space H,

then the following approximation theorem is an immediate conse-

quence of the spectral representation for the operator U.

Theorem A. (a) Let {Et:0^t^2w} denote the family of spectral

projections associated with U; then if e>0 and a, 0 = a = 27r, are given

and if x is any element in the range of the projection Ea+t—Ea, we have:

||(U - e«'")x|| = e||s||;

(b) moreover, for this same e, there exists a finite collection of closed

linear manifolds in H such that H is the direct sum of these manifolds ;

and in each subspace, U behaves as in part (a).

E. R. Lorch [7] extended this theorem to certain classes of oper-

ators in a reflexive Banach space. The class considered by Lorch

consists of those bounded, invertible operators V for which the norms

of their iterates are restricted by the condition, || F"|| =0(1) as |w|

tends to infinity.

The author [ó] extended the results or Lorch to a somewhat larger

class restricted by the condition, || Fn|| = 0(| n\). This extension was

made through the use of methods developed by N. Dunford [4], [5].

In the present paper, the result is extended to a much larger class

of operators by using the methods of Harmonic analysis as developed

by A. Beurling [l], J. Wermer [8], Y. Domar [3], and others. It
should be mentioned that this extension might have been possible

through the use of methods developed by F. Wolf [9] in his spectral

theory for operators based on the generalized trigonometric integrals

of S. Bochner. The present class is restricted by the condition,

(i) || Fn|| =0(|«| *) as \n\ tends to infinity, for some g>0.

An operator V, defined in a Banach space B, which satisfies condi-

tion (i) is easily seen to have it spectrum on the circumference of the

unit circle. Moreover, the usual operational calculus may be extended

by introducing a certain weighted algebra associated with the se-

quence {| Fn||:« = 0, ±1, • • • }. Such algebras were introduced by

Beurling [l], and later generalized by Wermer and Domar.
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Definition 1. Let p„ and d„, re = 0,-+ 1, • • ■ be sequences of posi-

tive numbers such that preS:l, pn+mèPnPm, and p„=d„, where dn is an

even, increasing sequence. Denote by A„ the space of all continuous,

periodic   functions   fid)    whose    Fourier    coefficients   /„    satisfy

ZX-«P»|/«|  < °°-
When given the norm ||/|| = 53-°» pn\fn\, the space A„ becomes a

commutative Banach algebra under pointwise multiplication More-

over, if p„ is further restricted by 53-» 1°§! P»/(l+w2) < °° ■ the alge-

bra A„ is regular. In the present application, we take p» = || Vn\\ ; the

relevant conditions satisfied by p„ follow directly from the restriction

of polynomial growth on || Vn\\.

Using the algebra Ap, an operational calculus may be generated for

V by setting /( V) = 53- » f» Vn, for such / in ^4 „. In order to apply the

methods of harmonic analysis, we shall drop down to the space B

and look at the induced map on APXB-^B defined by/o a=f(V)a,

where/belongs to A„ and a to P. The idea of considering the induced

map is an adaptation of a technique developed by Domar in his

study of function algebras over locally compact Abelian groups.

Using the continuity of the mapping (/, a) —»/o a, we may associ-

ate with each element a in B a closed subset A (a) of the circumference

of the unit circle defined as the hull of the ideal 1(a) — {f£.Ap: fo a

— 0}. In addition, for each /in Af, let A/ denote the closure of the

support of/; then the following results are basic (cf. [3]).

Lemma 1. (a) A (a) is void if and only if a = 0.

(b) For any f in Ap and a in B, A(f o a) ç A/HA (a).
(c) If f and g belong to Ap and f = g in some neighborhood of A (a),

then f o a = go a.

The elements <j> of the adjoint space A* may be identified with the

space of sequences {<£„} for which sup„ |</>n[ /p„< » by means of the

representation </>(/)= 53-°°/»<£«! furthermore \\<f>\\ =supn |<pn| /pn-

With each </> in A*, there is associated a pair of functions $+(s)

= 53i°° 0z_n> $~(z) = — 53o° <i>-nZn, where <£+ and <I>~ are defined and

analytic for \z\ > 1 and \z\ < 1, respectively. Using the pair (<£+, 3>_)

we may define a closed set <r(<f>) as the set of points X on the circumfer-

ence of the unit circle for which the pair (<£+, 4>_) do not continue

each other across any arc containing the point X (cf. [2], [8]).

On the other hand we may construct another representation of A„,

this time as an operator over the Banach space A* in place of the

space B. In this case the action of / as an operator in A* will be de-

fined by (/o 4>)(g) =<t>(Jg). With this representation the set A(<j>) may

be defined just as was done for the elements of B. In [3] it was shown
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that a(4>) =A(</>). Now for any a in B and a* in B*, the sequence

(¡>n=a*(Vn~1a) defines an element <f> in A*. Using the definition of

<r(<j>) we are led to the usual definition (cf. [5]) of the spectrum <r(a)

of an element a in B as the set of points X, |X| =1, such that for

some a* in B*, X belongs to the spectrum of {a*(Vn~1a)} as an ele-

ment of A*.

Theorem 1. For each a in B, a(a) =A(a).

This result is established as follows. Let a be a fixed element in B,

and let <pa* denote the element in A* corresponding to the sequence

{a*(Vna)}. Observe that since (fg) o a =g o (f o a), we have

H {/(&,): a* in ¿1*}

= {/ in A„: a*[go (fo a)] = 0 for all g in A„ and a* in Ap]

= {/in A„: go (fo a) = 0 for all g in A„) = 1(a).

Hence A(<pa*) QA(a) for every a* in B*; so that if A denotes the

closure of the union of the sets A((j>a*) taken over all a* in B*, then we

have A ÇA (a). If A were a proper subset, then there would exist a

point ¿0 together with a closed neighborhood N of t0 such that Nf~\A

= 0. But then Nr\A((pa*)=0 for every a* in B*. Since A(<t>a*)

= hull I(<t>**), we see that if A/ C.N and /(/o)?éO, then / belongs to

I(4>a*) for all a* in B*. But then/belongs to 1(a). Since the point t0

belongs to A(a) we have/(i0)=0, which is a contradiction. Hence,

using the fact that A(<j>a*) =o-(<¡>a*), we have A(a) =A and A = closure

of the union of the sets o-(4>a*) taken over all a* in B*. On the other

hand, it is easily seen that AçZa(a). Just as before, if A were a proper

subset there would exist a point t0 in a(a) and a closed neighborhood

AT of to such that NC\a{<pa*)=0 for all a*. But then a*[(t- V)~la]

would be analytic in N for every a* in B*, contradicting the assump-

tion that t0 belongs to a(a).

In the following generalized approximation theorem, the role

played by the range of the spectral projections in the case of a

unitary operator is taken over by certain "spectral subspaces" de-

fined in the following way. For each closed subset A of the circum-

ference of the unit circle, set MA = {a in B:a(a)QA}. Wermer [8]

has shown that the linear manifold {a in B:AaC.A\ is closed; this,

together with Theorem 1, shows that Ma is indeed a subspace.

Theorem 2. Given any e>0 there exists a 5>0 such that for any X

with — 7r<X<ir and any element a in B which lies in the sub pace

L(X)= {a in B; (r(a)C [X-S, X+5]}

||(7 — eiX)a|| = e||a||.
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Moreover, the space B is spanned by a finite collection of such manifolds.

The proof rests on the following lemma.

Lemma 2. For any X in [—-w, tt] and any e>0 there exists an 77>0

and a function f in A„ such that

(i) 11/11 = 53-» Pn |/»| <e, and
(ii) f(e)se^-eafor \d-\\ <r¡.

It suffices to find such an / in the case where X = 0, since one has

only to set/x(0) =e*'x/(0-X), noting that \\fA\ =||/||, to obtain the gen-

eral result. For any a>0, set

f(d) = 1 - e"        for I 0 I = a,

= 0       for I e\ = 2a, with/ in C°°.

Then |/0| =i^o« and |/„| =ai£¡| n\~l for any integer I, where Kü and

Ki depend on/. Taking l^q + 2 and recalling that pn = M(l + | n\ 3),

we obtain ||/|[ ^aK' for some constant K'. Letting 17 = e/K' completes

the proof of the lemma.

Now if e>0 and X are given, we construct/as in the above lemma

and we set 3=77/2. Using Lemma 1(c) we see that if <r(a)C[X —5,

X+5], then

foa= (e*71 - eie) o a = (eA - V)a.

Hence

||(^-F)a||=||/oa|| <«||«||.

For the second part, we cover the interval [ — tt, t] with any finite

collection {Ay}",! of overlapping intervals each having length equal

to the 5 found in the first part. Over this cover we construct a par-

tition of unity {mj}"=1 with Uj(E:CM. Then for any element a in B we

have a = 01+02+ • • • +#„, where ay = «,- o a, and o-(ay)ÇA(wy)P\(r(a)

ÇAy. Let Xy denote the center of Ay and Py(0) =e{hi — ei>. Then, using

the preceding lemma, there exists an/(y> in A„ such that ||/(3)|| <e and

ju)=pj in a neighborhood of Ay. Thus

||(«*-F)a||-||/Wo*|| ¿44-

Corollary. J/a^O, then a(a) = {X0} if and only if Va = eiK°a.
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A NOTE ON NORMAL DILATIONS

ARNOLD LEBOW

I. Introduction. Our purpose is to give certain sufficient conditions

that a normal dilation of an operator be an extension from a reducing

subspace. The first result of this kind, that we know of, is due to

T. Andô [l] who considered compact normal dilations. In this note

we use only assumptions about the nature of the spectrum; neverthe-

less, we are able to recover Andô's theorem.

Let A be an operator on a Hubert space 3C. Let P be the orthogonal

projection of X onto a subspace 3C. Let T denote the restriction of

P^4P to 3C. The operator T is called a compression of A and A is

called a dilation of T. If Tn is the compression of An (n = 0 1, 2, 3, • • • )

then T is called a strong compression and A a strong dilation. Let X

be a compact subset of the plane containing <r(A) and a(T), the spec-

tra of A and T. The operator A is said to be an X-dilation of T if, for

every rational function r(-) which is analytic on X, the operator

r(A) is a dilation of r(T). These definitions were introduced by

Halmos. Some other writers use "dilation" to mean what we call

strong dilation. Sz-Nagy uses "projection" for compression. When T

is a strong compression of A Andô calls 3C a "semi-invariant" sub-

space of A.

These notions are related to the more familiar concepts of invariant

subspace and reducing subspace as follows. If 3C is an invariant sub-
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