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1. Introduction. Under certain circumstances, a topological linear

space acted upon by a given linear transformation r can be shown to

admit the action of a suitably continuous one-parameter group of

transformations containing t, and associated with t in a natural

way. An illustration is afforded by the following theorem, which

plays an important auxiliary role in [l]:

Let §,bea norm-closed linear sub space of S(3C). Then if S is invariant

under A—*T~lAT, S is invariant also under A^>A log T— (log T)A,

and under A^>T~*A T'for all real numbers s.

(Here 3C is a Hubert space, and S(3C) the algebra of all bounded

linear operators on 3C. T is a positive, regular element of 8 (3C).)

It is the purpose of this note to provide an appropriately general

setting for this theorem. Our main result is the:

Invariance theorem. Let 33 be a Banach algebra, x and y elements

of 33 with spectra in the open right half-plane H+. Let <p be a strongly

continuous representation of S3 on the topological linear space 8, with

<p(xy) =<b(yx). Then every closed subspace S of S invariant under <b(xy)

is invariant also under c/>(log x+log y) and under <p(x"y') for all real

numbers s. s—xb(x'y') is a strongly continuous one-parameter group in

8(8).

(Here z* = exp(s log z), where log is defined for complex a in the

complement 2 of the nonpositive real numbers R~ by taking arg a

£(—it, if), and then for z in 33 with spectrum a(z) CS by Cauchy's

formula [2, §§5.2, 5.4], [5, Theorem 3.5.1].)

2. Preliminary results.

Lemma 1. Let 33 be a Banach algebra with identity element, x and y

commuting regular elements of S3 with spectra in H+. Then log(xy)

= logx+logy.

Proof. We first remark that er(xy)G<r(x)cr(y) = {rs|r£cr(x),

sEo(y)}. In fact, let 33' be a maximal commutative subalgebra of 33
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containing x and y. Then the injection map of 33' into 33 is spectrum-

preserving [5, Theorem 1.6.9]. If aG<r(xy), we can choose a homo-

morphism h of 33' onto the complex numbers with a = fe(xy) =A(x)A(y)

G<r(^)c(y), proving the remark. (The author is indebted to Professor

R. V. Kadison for the simplicity of the above proof.)

From the hypothesis and the remark above, we conclude that

<r(xy) CE, so that log(xy) is defined. By standard properties of the

functional calculus for commutative Banach algebras [5, Theorem

3.5.1] we have for each element z of 33' with o-(z) CE, and for each

homomorphism h of 93' onto the complex numbers,

Ä(logz) = logA(z).

Now logihix)hiy)) = log A(x)4-log A(y), since |arg A(x)|<ir/2,

I arg hiy) | <tt/2, showing the imaginary part of the sum on the right

to be less than -k in absolute value.

We set q =log(xy) — log x — log y and show by a trivial computation

that hiq) =0, whence gGradical 33'. On the other hand, exp(g) =1, so

that by a result of Lorch [3, p. 421; 2, Theorem 5.5.5], g is a finite

linear combination of idempotents j, which we may take to be

mutually orthogonal. But then, since the radical is an ideal, each j

is in the radical. Finally, an idempotent in the radical must be zero,

and q = 0, as claimed.

Mergelyan [4] has shown that if £ is a compact subset of the com-

plex plane, each function / continuous on E and analytic at interior

points of E is uniformly approximable on E by polynomial functions

if and only if E does not divide the plane. For z in (B with aiz) CE, we

apply Mergelyan's theorem to the case / = log, E=E'-\-V, where E'

= {a\ \a\ g||z|| &dist(a, R-)^2/3 dist(cr(z), R-)} and V is the

closed disc of radius 1/2 dist(<r(z), R-) centered at 0 in the complex

plane. Then if {pn} is a sequence of polynomials such that p„—dog

uniformly on -E,£„(z)—dog (z) by [2, Theorem 5.2.5]. Thus log z, slogz,

and finally exp(s log z)=z" are approximable by polynomials in z,

provided only that aiz) CE. An immediate consequence is that if w

and z are commuting elements of <B with spectra in S, then log w, log z,

w" and z* lie in the closed commutative algebra generated by w, z and

the unit element e. Then, returning to the notation and hypotheses of

Lemma 1 we have:

Corollary 1. x'y" = (xy)'.

Proof. Clear.

Corollary 2. x"y* is a limit of polynomials in xy.

This is immediate from Corollary 1 and the preceding remarks.
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3. Proof of the main result. The strong continuity of <f> means that

for each vector v of 8, the mapping x—><p(x)v is continuous on 33 to 8.

Equivalently, <b is continuous on 33 with its norm topology to 8(8)

in the point-open topology. Thus the kernel 3JÎ of <p is a closed, two-

sided ideal in 33, and <p defines a strongly continuous and faithful

representation c/>* of SS/9DÎ on 8. Our proof is a straightforward reduc-

tion from S3 to 33/ä7c.

The natural map ß of 33 onto 33/SDÎ is continuous, and preserves

polynomials, so that p. o exp = exp o ß. Moreover, since er(z*) Gc(z)

(for z in 33, z*=p(z)), we may conclude that if cr(z) G£7+(resp. 2),

then cr(s*) EH+ (resp. 2), and in either case log z* exists and (log z)*

= log(z*), (z*)* = (z*)*. Finally, x*y*=y*x*, because <f>(xy)=<p(yx) by

hypothesis. Applying Corollary 2 (and its proof) to these commuting

elements of 33/9Jc, we conclude that x%y% and log(x*y*) are limits

of polynomials in x*y*. But then if S is a closed subspace of 8 invariant

under <p(xy) =$*(x*y*), S is invariant also under <p(x%y%) =<b*(x%y%) and

under <?i(log x + log y) = <?>*(log x* + log y*) =0*(log(x*y*)), which was

to be shown.

That s—*<p(x'y*) is a strongly continuous group of endomorphisms

of S is clear from the above considerations.

4. Application to inner automorphisms. In this section, we recover

the first-cited theorem of the introduction, in considerably greater

generality.

Corollary 3. Let 21 be a Banach algebra with unit element, z an

element of 21 with <r(z) EH+. Let S be a closed subspace of 21 invariant

under x-^z_1xz. Then $ is invariant under x—>x log z— (log z)x and

under x—*z~'xz* for all real numbers s.

Proof. We know that z_1 exists, and that cr(z_1) EH+, also. In the

statement of the theorem, take 33 = 8(21), 8 = 21, and c/> = identity. De-

note by w®I (I<&w) the transformation v—>wv (v-^vw) for w in 21,

and set x = z"1®I, y = I®z. Recalling that the left- and right-regular

representations of a Banach algebra 21 with identity are spectrum-

preserving isometric isomorphisms of 21 onto mutually commuting

subalgebras of 8(21), [5, Chapter 1] we find the hypotheses of the

theorem verified in the above interpretation. We conclude from the

theorem that S is invariant under log(z_1®7)+log(7c2)z) and under

(z-1®7)»(7<8>z)' for all real 5. But these are 7®log z—log z®I and

z~'®z", respectively. In fact, polynomial approximations via Merge-

lyan's theorem, together with the remark above on the regular repre-

sentations, afford immediate verification.
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