AN INVARIANCE THEOREM FOR REPRESENTATIONS OF BANACH ALGEBRAS

L. TERRELL GARDNER¹

1. Introduction. Under certain circumstances, a topological linear space acted upon by a given linear transformation τ can be shown to admit the action of a suitably continuous one-parameter group of transformations containing τ , and associated with τ in a natural way. An illustration is afforded by the following theorem, which plays an important auxiliary role in [1]:

Let S be a norm-closed linear subspace of $\mathfrak{L}(\mathfrak{R})$. Then if S is invariant under $A \to T^{-1}AT$, S is invariant also under $A \to A \log T - (\log T)A$, and under $A \to T^{-*}AT$ for all real numbers s.

(Here $\mathfrak R$ is a Hilbert space, and $\mathfrak L(\mathfrak R)$ the algebra of all bounded linear operators on $\mathfrak R$. T is a positive, regular element of $\mathfrak L(\mathfrak R)$.)

It is the purpose of this note to provide an appropriately general setting for this theorem. Our main result is the:

Invariance theorem. Let \mathfrak{B} be a Banach algebra, x and y elements of \mathfrak{B} with spectra in the open right half-plane H^+ . Let ϕ be a strongly continuous representation of \mathfrak{B} on the topological linear space \mathcal{E} , with $\phi(xy) = \phi(yx)$. Then every closed subspace \mathcal{E} of \mathcal{E} invariant under $\phi(xy)$ is invariant also under $\phi(\log x + \log y)$ and under $\phi(x^*y^*)$ for all real numbers \mathcal{E} . \mathcal{E} subspace \mathcal{E} of \mathcal{E} invariant elements \mathcal{E} is a strongly continuous one-parameter group in $\mathcal{E}(\mathcal{E})$.

(Here $z^* = \exp(s \log z)$, where log is defined for complex α in the complement Σ of the nonpositive real numbers R^- by taking arg $\alpha \in (-\pi, \pi)$, and then for z in \mathfrak{B} with spectrum $\sigma(z) \subset \Sigma$ by Cauchy's formula $[2, \S 5.2, 5.4]$, [5, Theorem 3.5.1].)

2. Preliminary results.

LEMMA 1. Let \mathfrak{B} be a Banach algebra with identity element, x and y commuting regular elements of \mathfrak{B} with spectra in H^+ . Then $\log(xy) = \log x + \log y$.

PROOF. We first remark that $\sigma(xy) \subset \sigma(x)\sigma(y) = \{rs \mid r \in \sigma(x), s \in \sigma(y)\}$. In fact, let \mathfrak{B}' be a maximal commutative subalgebra of \mathfrak{B}

Received by the editors September 1, 1964.

¹ This work was supported in part by the National Science Foundation under Grant NSF GP-1604.

containing x and y. Then the injection map of \mathfrak{B}' into \mathfrak{B} is spectrum-preserving [5, Theorem 1.6.9]. If $\alpha \in \sigma(xy)$, we can choose a homomorphism h of \mathfrak{B}' onto the complex numbers with $\alpha = h(xy) = h(x)h(y) \in \sigma(x)\sigma(y)$, proving the remark. (The author is indebted to Professor R. V. Kadison for the simplicity of the above proof.)

From the hypothesis and the remark above, we conclude that $\sigma(xy) \subset \Sigma$, so that $\log(xy)$ is defined. By standard properties of the functional calculus for commutative Banach algebras [5, Theorem 3.5.1] we have for each element z of \mathfrak{B}' with $\sigma(z) \subset \Sigma$, and for each homomorphism h of \mathfrak{B}' onto the complex numbers,

$$h(\log z) = \log h(z).$$

Now $\log(h(x)h(y)) = \log h(x) + \log h(y)$, since $|\arg h(x)| < \pi/2$, $|\arg h(y)| < \pi/2$, showing the imaginary part of the sum on the right to be less than π in absolute value.

We set $q = \log(xy) - \log x - \log y$ and show by a trivial computation that h(q) = 0, whence $q \in \text{radical } \mathfrak{B}'$. On the other hand, $\exp(q) = 1$, so that by a result of Lorch [3, p. 421; 2, Theorem 5.5.5], q is a finite linear combination of idempotents j, which we may take to be mutually orthogonal. But then, since the radical is an ideal, each j is in the radical. Finally, an idempotent in the radical must be zero, and q = 0, as claimed.

Mergelyan [4] has shown that if E is a compact subset of the complex plane, each function f continuous on E and analytic at interior points of E is uniformly approximable on E by polynomial functions if and only if E does not divide the plane. For z in $\mathfrak B$ with $\sigma(z) \subset \Sigma$, we apply Mergelyan's theorem to the case $f = \log_{\mathfrak K} E = E' + V$, where $E' = \{\alpha \mid |\alpha| \le ||z|| \& \operatorname{dist}(\alpha, R^-) \ge 2/3 \operatorname{dist}(\sigma(z), R^-) \}$ and V is the closed disc of radius $1/2 \operatorname{dist}(\sigma(z), R^-)$ centered at 0 in the complex plane. Then if $\{p_n\}$ is a sequence of polynomials such that $p_n \to \log$ uniformly on E, $p_n(z) \to \log(z)$ by [2, Theorem 5.2.5]. Thus $\log z$, $s \log z$, and finally $\exp(s \log z) = z^s$ are approximable by polynomials in z, provided only that $\sigma(z) \subset \Sigma$. An immediate consequence is that if w and z are commuting elements of $\mathfrak B$ with spectra in Σ , then $\log w$, $\log z$, w^s and z^s lie in the closed commutative algebra generated by w, z and the unit element e. Then, returning to the notation and hypotheses of Lemma 1 we have:

COROLLARY 1. $x^s y^s = (xy)^s$.

Proof. Clear.

COROLLARY 2. x*y* is a limit of polynomials in xy.

This is immediate from Corollary 1 and the preceding remarks.

3. **Proof of the main result.** The strong continuity of ϕ means that for each vector v of \mathcal{E} , the mapping $x \rightarrow \phi(x)v$ is continuous on \mathfrak{B} to \mathcal{E} . Equivalently, ϕ is continuous on \mathfrak{B} with its norm topology to $\mathfrak{L}(\mathcal{E})$ in the point-open topology. Thus the kernel \mathfrak{M} of ϕ is a closed, two-sided ideal in \mathfrak{B} , and ϕ defines a strongly continuous and faithful representation ϕ_* of $\mathfrak{B}/\mathfrak{M}$ on \mathcal{E} . Our proof is a straightforward reduction from \mathfrak{B} to $\mathfrak{B}/\mathfrak{M}$.

The natural map μ of \mathfrak{B} onto $\mathfrak{B}/\mathfrak{M}$ is continuous, and preserves polynomials, so that $\mu \circ \exp = \exp \circ \mu$. Moreover, since $\sigma(z_*) \subset \sigma(z)$ (for z in \mathfrak{B} , $z_* = \mu(z)$), we may conclude that if $\sigma(z) \subset H^+$ (resp. Σ), then $\sigma(z_*) \subset H^+$ (resp. Σ), and in either case $\log z_*$ exists and $(\log z)_* = \log(z_*)$, $(z^s)_* = (z_*)^s$. Finally, $x_*y_* = y_*x_*$, because $\phi(xy) = \phi(yx)$ by hypothesis. Applying Corollary 2 (and its proof) to these commuting elements of $\mathfrak{B}/\mathfrak{M}$, we conclude that $x_*^s y_*^s$ and $\log(x_*^s y_*^s)$ are limits of polynomials in x_*y_* . But then if S is a closed subspace of E invariant under $\phi(xy) = \phi_*(x_*y_*)$, E is invariant also under E (log E (E), which was to be shown.

That $s \rightarrow \phi(x^s y^s)$ is a strongly continuous group of endomorphisms of S is clear from the above considerations.

4. Application to inner automorphisms. In this section, we recover the first-cited theorem of the introduction, in considerably greater generality.

COROLLARY 3. Let $\mathfrak A$ be a Banach algebra with unit element, z an element of $\mathfrak A$ with $\sigma(z) \subset H^+$. Let s be a closed subspace of $\mathfrak A$ invariant under $x \to z^{-1}xz$. Then s is invariant under $x \to x - \log z - (\log z)x$ and under $x \to z^{-s}xz^s$ for all real numbers s.

PROOF. We know that z^{-1} exists, and that $\sigma(z^{-1}) \subset H^+$, also. In the statement of the theorem, take $\mathfrak{B} = \mathfrak{L}(\mathfrak{A})$, $\mathfrak{E} = \mathfrak{A}$, and $\phi = \text{identity}$. Denote by $w \otimes I$ $(I \otimes w)$ the transformation $v \to wv$ $(v \to vw)$ for w in \mathfrak{A} , and set $x = z^{-1} \otimes I$, $y = I \otimes z$. Recalling that the left- and right-regular representations of a Banach algebra \mathfrak{A} with identity are spectrum-preserving isometric isomorphisms of \mathfrak{A} onto mutually commuting subalgebras of $\mathfrak{L}(\mathfrak{A})$, [5, Chapter 1] we find the hypotheses of the theorem verified in the above interpretation. We conclude from the theorem that \mathfrak{L} is invariant under $\log(z^{-1} \otimes I) + \log(I \otimes z)$ and under $(z^{-1} \otimes I)^s(I \otimes z)^s$ for all real s. But these are $I \otimes \log z - \log z \otimes I$ and $z^{-s} \otimes z^s$, respectively. In fact, polynomial approximations via Mergelyan's theorem, together with the remark above on the regular representations, afford immediate verification.

BIBLIOGRAPHY

- 1. L. T Gardner, On isomorphisms of C*-algebras, Amer. J. Math. 87 (1965), 384-396.
- 2. E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. Colloq. Publ. Vol. 30, Amer. Math. Soc., Providence, R. I., 1957.
- 3. E. R. Lorch, The theory of analytic functions in normed abelian vector rings, Trans. Amer. Math. Soc. 54 (1943), 414-425.
- 4. S. N. Mergelyan, On the representation of functions by series of polynomials, Dokl. Akad. Nauk SSSR 78 (1951), 405-408; English Transl., Amer. Math. Soc. Transl. No. 85, Amer. Math. Soc., Providence, R. I., 1953.
- 5. C. E. Rickart, General theory of Banach algebras, Van Nostrand, New York, 1960.

COLUMBIA UNIVERSITY