A NOTE ON THE PARALLELIZABILITY OF REAL STIEFEL MANIFOLDS

DAVID HANDEL¹

1. Introduction. Sutherland has proved in [4], among other things, that the Stiefel manifolds $V_{n,q}$ of orthonormal q-frames in \mathbb{R}^n are parallelizable for $q \ge 2$. The proof there consists of showing that the $V_{n,q}$ are stably parallelizable, and then invoking some results of Adams and Kervaire, [1], [2], and [3], which show that under certain circumstances stably parallelizable implies parallelizable. The purpose of this note is to give a more elementary proof of the parallelizability of the $V_{n,q}$ for q > 2.

2. Preliminaries and statement of the theorem. Let S^{n-1} denote the unit sphere in \mathbb{R}^n . $V_{n,q}$ can then be regarded as the subspace of $S^{n-1} \times \cdots \times S^{n-1}$, q times, consisting of all (x_1, \cdots, x_q) in S^{n-1} $\times \cdots \times S^{n-1}$ with $x_i \perp x_j$ for $i \neq j$. As such, $V_{n,q}$ is a differentiable submanifold of $S^{n-1} \times \cdots \times S^{n-1}$.

THEOREM. $V_{n,q}$ has a trivial normal bundle in $S^{n-1} \times \cdots \times S^{n-1}$. If q > 2, then $V_{n,q}$ is parallelizable.

For any bundle ξ , write ξ_x for the fibre over a point x in the base space. Write $\bar{\tau}$ for the tangent bundle of $S^{n-1} \times \cdots \times S^{n-1}$, τ for the tangent bundle of $V_{n,q}$ and ν for the normal bundle of $V_{n,q}$ in S^{n-1} $\times \cdots \times S^{n-1}$. Then $\bar{\tau} \mid V_{n,q} = \tau \oplus \nu$, where \oplus denotes Whitney sum. If $x = (x_1, \cdots, x_q) \in S^{n-1} \times \cdots \times S^{n-1}$, $\bar{\tau}_x$ consists of all $(x; u_1, \cdots, u_q)$ where $u_i \in \mathbb{R}^n$, $u_i \perp x_i$, $1 \leq i \leq q$. The inner product of $(x; u_1, \cdots, u_q)$ and $(x; u'_1, \cdots, u'_q)$ in $\bar{\tau}_x$ is $\sum_i u_i \cdot u'_i$. For $x \in V_{n,q}$, τ_x is the orthogonal complement of ν_x in $(\bar{\tau} \mid V_{n,q})_x$.

3. The normal bundle ν . If $x \in V_{n,q}$, then $(x; u_1, \dots, u_q) \in (\bar{\tau} | V_{n,q})_x$ is normal to $V_{n,q}$ if and only if

(1)
$$\lim_{x'\to x;x'\in V_{n,q}}\frac{(x-x')\cdot(u_1,\cdots,u_q)}{||x-x'||}=0.$$

For $1 \leq r < s \leq q$, let $\lambda_{r,s}$ denote the line subbundle of $\bar{\tau} \mid V_{n,q}$ whose fibre $(\lambda_{r,s})_x$ is spanned by

Received by the editors September 6, 1964.

¹ The author held a National Science Foundation Summer Fellowship for Graduate Teaching Assistants during the preparation of this note.

$$(x; 0, \dots, 0, x_s, 0, \dots, 0, x_r, 0, \dots, 0).$$

 r th sth

 $\lambda_{r,s}$ is a trivial bundle, and for $(r, s) \neq (r', s')$, $(\lambda_{r,s})_x$ is orthogonal to $(\lambda_{r',s'})_x$ for all $x \in V_{n,q}$. Thus, $\bigoplus_{1 \leq r < s \leq q} \lambda_{r,s}$ is a trivial $\frac{1}{2}q(q-1)$ -plane subbundle of $\tilde{\tau} \mid V_{n,q}$.

If $x = (x_1, \dots, x_q)$ and $x' = (x'_1, \dots, x'_q)$ are in $V_{n,q}$, then using the fact that $x_i \cdot x_j = x'_i \cdot x'_j = \delta_{ij}$, we have

$$\begin{aligned} & \text{rth} & \text{sth} \\ \frac{|(x-x')\cdot(0,\cdots,0,x_s,0,\cdots,0,x_r,0,\cdots,0)|}{||x-x'||} \\ &= \frac{|(x_r-x'_r)\cdot x_s + (x_s-x'_s)\cdot x_r|}{(\sum_i ||x_i-x'_i||^2)^{1/2}} = \frac{|(x_r-x'_r)\cdot (x_s-x'_s)|}{(\sum_i ||x_i-x'_i||^2)^{1/2}} \\ &\leq ||x_r-x'_r|| \cdot \frac{||x_s-x'_s||}{(\sum_i ||x_i-x'_i||^2)^{1/2}} \leq ||x_r-x'_r||. \end{aligned}$$

As x' tends to x, x' tends to x, so $||x_r - x'_r||$ tends to 0. Hence by (1), $(\lambda_{r,s})_x$ is normal to $V_{n,q}$ at x for all $x \in V_{n,q}$, $1 \le r < s \le q$ and so $\bigoplus_{1 \le r < s \le q} \lambda_{r,s}$ is a trivial $\frac{1}{2}q(q-1)$ -plane subbundle of ν .

But since $V_{n,q}$ is an S^{n-q} -bundle over $V_{n,q-1}$, and $V_{n,1}\cong S^{n-1}$, it follows by induction on q that $V_{n,q}$ is a manifold of dimension q(n-1) $-\frac{1}{2}q(q-1)$. Hence, since dim $S^{n-1} \times \cdots \times S^{n-1}$, q times, is q(n-1), it follows that ν has fibre dimension $\frac{1}{2}q(q-1)$. Hence, $\nu = \bigoplus_{1 \le r < s \le q} \lambda_{r,s}$ $\cong \frac{1}{2}q(q-1)$ (we write k for the trivial k-plane bundle over $V_{n,q}$).

4. The tangent bundle τ . For $1 \leq i \leq q$, let α_i denote the subbundle of $\tilde{\tau} \mid V_{n,q}$ whose fibre $(\alpha_i)_x$ consists of all

$$(x; 0, \dots, 0, u, 0, \dots, 0)$$

*i*th

where $u \in \mathbb{R}^n$, $u \perp x_k$, $1 \leq k \leq q$. α_i is an (n-q)-plane bundle. Note that $(\alpha_i)_x$ is orthogonal to ν_x in $(\bar{\tau} \mid V_{n,q})_x$, $1 \leq i \leq q$.

For $1 \leq r < s \leq q$, let $\beta_{r,s}$ denote the line subbundle of $\bar{\tau} \mid V_{n,q}$ whose fibre $(\beta_{r,s})_x$ is spanned by

$$(x; 0, \dots, 0, x_s, 0, \dots, 0, -x_r, 0, \dots, 0).$$

*r*th sth

 $\beta_{r,s}$ is a trivial line subbundle of $\bar{\tau} | V_{n,q}$. Note that $(\beta_{r,s})_x$ is orthogonal to ν_x , to all $(\alpha_i)_x$, and to $(\beta_{r',s'})_x$ for $(r, s) \neq (r', s')$. Hence $(\bigoplus_{1 \leq i \leq q} \alpha_i)$

 $\oplus (\oplus_{1 \leq r < s \leq q} \beta_{r,s})$ is a subbundle of τ of fibre dimension $q(n-q) + \frac{1}{2}q(q-1) = q(n-1) - \frac{1}{2}q(q-1) = \dim V_{n,q}$. Hence,

$$\tau = \left(\bigoplus_{1 \leq i \leq q} \alpha_i \right) \oplus \left(\bigoplus_{1 \leq r \leq s \leq q} \beta_{r,s} \right) \cong \left(\bigoplus_i \alpha_i \right) \oplus \frac{1}{2} q(q-1).$$

The trivial *n*-plane bundle $V_{n,q} \times \mathbb{R}^n$ over $V_{n,q}$ splits as the Whitney sum $\alpha \oplus \gamma$ where α_x consists of all $(x, u), u \in \mathbb{R}^n, u \perp x_k, 1 \leq k \leq q$, and γ_x consists of all $(x, v), v \in \mathbb{R}^n, v$ in the span of x_1, \dots, x_q . γ is a trivial *q*-plane bundle, having the *q* everywhere linearly-independent cross-sections s_i defined by $s_i(x) = (x, x_i), 1 \leq i \leq q$. Hence, $\alpha \oplus q \simeq n$. Hence, $k\alpha \oplus l$ is trivial if $l \geq q$, and *k* is any positive integer.

Each of the α_i above is equivalent to α . Hence $\tau \cong q\alpha \oplus \frac{1}{2}q(q-1)$. If q > 2, $\frac{1}{2}q(q-1) \ge q$, and so τ is trivial.

References

1. J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.

2. M. A. Kervaire, Courbure intégrale généralisée et homotopie, Math. Ann. 131 (1956), 219-252.

3. -----, Relative characteristic classes, Amer. J. Math. 79 (1957), 517-558.

4. W. A. Sutherland, A note on the parallelizability of sphere-bundles over spheres, J. London Math. Soc. 39 (1964), 55-62.

UNIVERSITY OF CHICAGO