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1. Introduction. Let M be a connected paracompact C°° manifold,

K a Lie group, and ir: P—>M a principal iC-bundle. In this paper we

attack the problem of finding the possible holonomy groups for con-

nections in P. By [9, Chapter II, Theorems 7.1 and 8.2] this is

equivalent to finding the possible reductions of P.

Let 0 be the CM loop space on M (parametrized on [O, l]). Any

connection w on P defines a map hw: Í2—»AT. The homotopy properties

of this map place restrictions on the subgroups of K which can occur

as holonomy groups for connections in P. This material is treated in

§2 along with other topological preliminaries.

In §3 we consider the principal Ä-bundle G-+G/K for (G, K) a

compact symmetric pair. Using Nomizu's canonical connection co, we

compute hw in lower dimensions. This enables us, in §4, to obtain sig-

nificant restrictions on holonomy for certain of the (G, K).

The more usual approach to this sort of problem is by consideration

of the characteristic ring of the bundle. We do not claim essential

superiority for the present method, but we do believe that it is intui-

tively more enlightening and, for the cases treated here, computation-

ally simpler than an approach through characteristic classes.

We wish to thank the referee for a number of helpful comments.

2. Topological preliminaries. The following remarks summarize

material fairly well known to topologists, although we do not know

an explicit reference.

Topologize Ü by demanding that convergence mean uniform con-

vergence of the tangent fields. Let p, q<E:M be such that u(0)=p,

u(l)=q, V«GŒ. Select ¿>oGt_1(^) and ffoG7r-1(s)- Identify ir~1(q)

with K by corresponding q0 to the identity e of K. Given a connection

co, define ha: Q—>K by ha(u) =v(l) where v is the unique w-lift of u

with v(0)=po- Given two connection forms co¡, ¿ = 0, 1, use the con-

vexity of the set of all connections to define connections co¡ = toi

+ (1 -/)wo, Og/^l. Finally define F:QX [0, l]-*K by F(u, t) =Kt(u).

(2.1) Proposition. F is continuous. In particular, Aw„ and hai are

continuous and homotopic.

Proof. Suppose (un, t»)-^(u, t) in Í2X[0, 1]. The oj¡n-lifts of «„

(resp. the corlift of u) can be written wn-a„ (resp. w-a) where the wn
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(resp. w) are C°° curves in P starting at po and the an (resp. a) are

C00 curves in K starting at e. We may also suppose that the tangent

fields w„—>w uniformly on [0, l]. Recall [9, pp. 69-70] that an (resp.

a) is the A-component of the integral curve to a vector field A" (resp.

A) on KXR starting at (e, 0). By the construction of these fields,

An—>X uniformly on Ax[0, l]. By standard theory F(un, tn)

->F(u, t,).    Q.E.D.

(2.2) Corollary. // HQK is the holonomy group for some connec-

tion in P, then hw deforms to a map factoring through H.

Remark that in homology Aw* is a well defined homomorphism of

Pontryagin rings. We do not use this fact, but it seems potentially

interesting.

Let G be a compact connected and simply connected Lie group, K

and H closed connected subgroups. H acts on G/K in a natural way.

The following lemma will be of use in §4.

(2.3) Lemma. // H*(G/K; R) is an exterior algebra on odd dimen-

sional generators and if H is transitive on G/K, then the natural projec-

tion it: H-^G/K induces an injection in real cohomology.

Proof. ir0(H)=0 and xi(G/X)=0, hence ir0(.HT\A)=0 and the

spectral sequence of Hf^K—^H—^G/K is well behaved. We must

show that the transgression / is zero on the universally transgressive

generators of H*(HC\K). If not, let x be such a generator of lowest

dimension such that i(x)^0. t(x) is even dimensional in H*(G/K),

hence it is an expression in lower (odd) dimensional generators. By

the minimality of dim(x) and the fact that H*(H) is an exterior alge-

bra, ir*t(x)?¿0, a contradiction.    Q.E.D.

3. A„ for a symmetric space. Let (G, K) be a compact connected

symmetric pair, ß the corresponding involution of G. G/K has Rie-

mannian structure induced by a left and right invariant metric on G.

Set g = f©m, the orthogonal direct sum decomposition of the Lie

algebra g into the +1 and — 1 eigenspaces of 0.

The map p: G/K—>>G defined by ¡x(xK) =xß(x~x) is a Cx covering

map of G/K onto exp(m), a totally geodesic submanifold of G. If A

is the full fixed point set of ß, ju is an imbedding into G. In any case,

¡jl maps geodesies to geodesies and takes the action of K on G/K to the

adjoint action of K on exp(m).

Following Bott [4], let v = (p, q; A), p and çGG/A and A a homo-

topy class of paths from p to q. There corresponds a path component

Q, of 0. Let M'QQy be the set of shortest geodesies. The following
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theorem was established in [4], but we produce here a proof which

sets the stage for the computation of hw. We suppose p=eK.

(3.1) Theorem (Bott). Let sGM". M" is homeomorphic to a sym-

metric space H/L, where H is the connected centralizer of p.(q) in K, and

LQH is the centralizer of p(s(t)), O^t^i.

Proof, j being minimal, y = s(l/2) is not conjugate to s(0) along 5.

Set a = p(y). Then Ha, the centralizer of a in H, has the same identity

component as L, and L C.Ha. Since a2 =ß(q), Ad (a2) | iiis the identity.

If xGif, ß(axa~1)=aar2xa2a~1=axor1. Since also axar1 centralizes

ß(q), it follows that aHa~1 = H. Thus H/L is a symmetric space and,

by Morse-Bott theory, H/L -n(M') ~ M\    Q.E.D.
For a as above, define 7: M'-^K, in analogy with the definition of

jot, by
y(xL) = (Ad(a)x)x~l = (Ad(a-1)x)x-1,       Vx G H.

Let w be Nomizu's canonical connection on r: G-+G/K [9, Note 7].

For the definition of h„ take p0 = e and g0 = a. Note that since a2 = p. (q),

-k(oí) =q.

(3.2) Theorem. hw\M'=y.

Proof. Any one parameter subgroup of G starting from e in an

m-direction is horizontal with respect to w. Thus for sGJIi', ¡x(s) is

horizontal. Furthermore, irp,s(t/2)=s(t), hence the w-lift of 5 is a(t)

=ßs(t/2), Ogí^l. For xG-ff, the w-lift of x-s is xo-x-1. Thus hu(x-s)

= or1xax~1=y(xL). Q.E.D.

Remarks. The map ha gives an expression for the boundary map

in the homotopy sequence of a principal bundle. The map T = hw\ M"

defined by a connection w on a principal bundle P—*G/K generalizes

the characteristic map for bundles over spheres of [12, §§23, 24].

Theorem 23.2 of [12] immediately generalizes to this situation, the

integer 2« —3 being replaced by | v\ — 2, where | v\ is the least positive

integer that occurs as Morse index of a geodesic in £lr. (3.2) is a gen-

eralization of [12, 23.3] and as such is already essentially contained

in the work of Bruno Harris [ó].

4. Some applications. In the following paragraphs we apply our

theory to the bundles G—>G/K for certain symmetric pairs (G, K).

We will use cohomology theory, understanding always that the co-

efficient ring is the real number field.

A. (SO(2re), U(n)). Consider first the case n = 2m. Bott [4] gives

M'= U(2m)/Sp(m). Let it: U(2m)-+M' be the projection. Then by

[6, Proposition 1 ] or by the theory of [l ] the map

y***:H*(M')-*H*(M')
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does not vanish on the fundamental class. It follows that if 7 is

homo topic to a map factoring through HQ U(2m), then H is transi-

tive on U(2m)/Sp(m).

(4.1) Lemma. If HQU(2m) is a holonomy group for SO(4m)

—>SO(im)/U(2m), then H is transitive on U(2m)/Sp(m).

(4.2) Theorem. A compact holonomy group H for SO(4m)

-^SO(4m) / U(2m) must be of type Aim-iXT\ i = i, 2, or U(2m).

Proof. By (4.1) we need only find the compact connected groups

LQSU(2m) which are transitive on SU(2m)/Sp(m). (2.3) applies

and enables one to prove that H*(L) contains an exterior algebra on

generators x,- of dim * = 5, 9, • ■ • , 4m — 3. These must also be in the

image of H*(SU(2m)), so by [7, Lemma 2] one shows that the x,- are

universally transgressive. From the cohomology ring structure of

compact Lie groups (cf. [il, pp. 10-14]) one deduces that L must

have a simple factor A2m_2 or A2m-i. The result on HQ U(2m) follows

easily from considerations of rank (cf. [3]).    Q.E.D.

If n = 2m + l, it can be shown that for suitable choice of v, M"

is again U(2m)/Sp(m). y factors through U(2m) C U(2m + l), so the

above trick can only be used for those HQ U(2m). We proceed differ-

ently.

(4.3) Theorem. A compact holonomy group H for SO(4m-\-2)

-^SO(4m+2)/U(2m + i) must be of type Aim-iXT\ i-i, 2, 3;

A2m_2XAiXr', i = l,2;A2ro_iXr¡, *'=1, 2; or 17(2«+ 1).

Proof. By [6, Proposition 1] 7* is one-one on a certain subalgebra

£1 of H*(U(2m + l)) =Ei®Ei, and by [7, p. 410] Pi is an exterior

algebra on generators x<, i = \, 5, • • • , 4m — 3. By (2.2) and (3.2) H

has among its primitive generators elements of the above dimensions

i. Again examining the cohomology of compact groups [ll] and

using the results of [3 ] to exclude certain possibilities, one shows that

the simple factor of H which explains the generator Xim-3 must be

Aim-2, Aim-i, or Aim. Because of xi there is also a factor T1. By the

results of [3] it easily follows that only the asserted possibilities can

occur.    Q.E.D.

B. (U(2n), 0(2n)). Reasoning somewhat as in [4] we obtain

jlf' = P2„_i = 0(2«)/0(2«-l)XO(l). Consider

i y j

where i is the double covering and j the projection. It is well known

that j o 7 o i is of degree 2. In particular, we obtain
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(4.4) Lemma. Any holonomy group

H C 0(2«)       for 17(2«) -> U(2n)/0(2n)

acts transitively (and effectively) on 52"-1.

(4.5) Theorem. A compact group H as in (4.4) must have identity

component H<¡ one of the following: SO(2n), SU(n), U(n), Spin(7)

(« = 4), Spin(9) (« = 8), or, if n = 2m, Sp(m), Sp(l)XZ2Sp(m).

The proof uses the well known classification of transitive effective

Lie groups on spheres (cf. [il, p. 26], [lO]).

A much stronger theorem is available. Arguments with homotopy

groups exclude all but SO(2n) in (4.5).

(4.6) Theorem. 2/ «>3, every connection on £7(2«)—>U(2n)/0(2n)

has holonomy group 0(2n).

The key fact in the proof of (4.6) is that/ o y o i is of degree 2. This

implies that the projection Ho-^S2"'1 induces a map in 7r2»-i with

cokernel 0 or Z2. As an example of how to use this fact, suppose

H0 = SU(n). Then ¿70nO(2w-l) = Si/(w-l). 7r2„_2(S<7(«)) =0 by

[4] and ir2n_2(Sî7(« —1)) =Z(n_i)| by [5, Theorem 5]. Thus the co-

kernel in question is Z(n_i)¡, a contradiction if w>3.

C. (Sp(n), U(n)). By [4] we take M'= U(n)/0(n). Consider first

the case « = 2m + l. Let it: U(n)-*M" be the projection. By [l] 7*7r*

does not vanish on the fundamental class. As usual, any holonomy

group HC U(2m-\-\) acts transitively on M".

(4.7) Theorem. Every connection on

Sp(2m + 1) -*Sp(2m + \)/U(2m + 1)

has holonomy group U(2m + 1).

Proof. It is enough to prove that if L(ZSU(2m + l) is a closed

connected subgroup transitive on SU(2m + l)/SO(2m + l), then

L = SU(2m + l). Application of (2.3) shows, in particular, that the

simple generator x4m+i of H*(SU(2m + l)) has nonzero restriction to

the subgroup L. It follows that the projection SU(2m + l)^>Sim+1

restricts to an essential map L-^Sim+1. By [ll, p. 26] L = SU(2m + l).

Q.E.D.

(4.8) Theorem. The only possible compact holonomy groups for

Sp(2m)^Sp(2m)/U(2m) are of type Aim-2XT\ i=i, 2, or U(2m).

The proof of (4.8) uses [6, Proposition 1] and the cohomology of

compact groups in essentially the same ways that we have already

sketched.
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D. (£7, E0XT1). Araki [2, p. 58] has computed an M' = Sl

X(Eo/Fi). Again applying [6, Proposition l] together with the re-

marks on p. 300 of that paper (or the theory of [l]) we obtain that

any holonomy group H = EoXTl acts transitively on S1X(Eo/Fi).

H*(E^/Fi) is exterior with generators x9, xn [2, Proposition 2.5],

hence (2.3) applies and our usual cohomological considerations yield

(4.9) Theorem. ^4wy connection on Et-^Et/EiXT1 has holonomy

group E6 X T\

E. (Ei, A/). To obtain M" select the a of §3 to be the nontrivial

element of the center of Et, and take er to be the geodesic correspond-

ing to a suitable edge of a fundamental simplex in the root diagram

of £7. From an examination of this root system one computes dim (M')

= 27. M' is a symmetric space of A7, hence (cf. the table in [8, p.

354]) M" has universal covering SU(8)/Sp(4). Reasoning as in (4.2)

(modulo the covering situation) we obtain

(4.10) Theorem. The only possible compact holonomy groups for

E-r^E-i/A-t are At, AtXT1, or A7.
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