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Then the conditions on |x| <1 require that/1,2 should be a solution

of (1). If det(7 — ia) p^O we can find a solution while if det(7 — ia) =0

there exists no solution.
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A REMARK ON AN ARITHMETIC THEOREM
OF CHEVALLEY

H. BASS

1. Let A be an algebraic number field with ring of integers 0, and

let £ be a finitely generated subgroup of the multiplicative group, A*.

All but finitely many primes p are "prime to £," i.e., the units of

0p contain £. An ideal a is called "prime to E" if its prime divisors

are. In this case we have a natural homomorphism

E -^ (0/a)*

whose kernel, the congruence subgroup {a££|a = l mod a}, is

evidently of finite index. We denote the group of all (complex) roots

of unity by Q/Z.

Theorem. Let x- E^Q/Z be a character of E. Then there are in-

finitely many prime ideals p of k, prime to E, such that x factors through

a character of (0/p)*, i.e., such that ker (£—>(0/p)*) Cker x-

It follows immediately that if U is a subgroup of finite index in £

then ker(£—>(©/a)*) C U for a suitable a, which we may take to be

square free. This is the form of the theorem proved by Chevalley in

[2]. That a may be taken square free is implicit in his proof. The

following corollary paraphrases Chevalley's theorem.

Corollary 1 (Chevalley). If we embed E in JJP prime to e (©/p)*,
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its closure is naturally identical with the completion, Ê, of E in the

topology defined by all subgroups of finite index.

I was led to these matters after proving the following corollary.

I am indebted to J.-P. Serre for referring me to Chevalley's paper.

Corollary 2. The algebraic closure of a finite field is generated, as a

field, by roots of unity of prime order. The same is (therefore) true of the

maximal unramified extension of a p-adic field.

Proof. Let Fp be the algebraic closure of Fp = Z/pZ, and let H be

the subgroup of F* generated by roots of unity of prime order. Let

L = FP(H) and let G — G(FP/FP), the Galois group. To show that

L = FP it suffices, by Galois theory, to show that the restriction map,

G—>Aut(H), is a monomorphism, since L is the fixed field of its kernel.

Now G is topologically isomorphic to Z, with generator /=Fro-

benius (pth power). H is isomorphic to the additive group © q^p Fq,

so Aut(ii) = J\q^P F*. Under this identification, G—> YL&p F* sends
/ to the element with all coordinates equal to p. With E the subgroup

of Q* generated by p, our assertion now follows from Corollary 1.

Q.E.D.
In case k = Q the theorem above was proved by Mills in [3] in a

slightly more precise form. Mills' argument is essentially the same as

Chevalley's (of which Mills was presumably unaware). This con-

sists of reducing the theorem to a computation of (F*)m(~\k*, F being

the field over k generated by a primitive mth root of unity. This re-

duction is repeated, for the reader's convenience, in the next section.

The preciseness of the final theorem is then a direct reflection of the

precision with which (F*)™r\k* is computed.

2. We show here (following Chevalley) how to deduce the Theo-

rem from the next proposition, whose proof will be given in part 3.

Proposition. Given N>0, then there is an m>0 such that, if F

is the field generated over k by a primitive mth root of unity, we have

(F*)m r\k*E (k*)N.

Proof of the theorem. Recall that we have EEk* and x: F

->0/Z. We must find p such that ker(£-^(©/p)*)Cker x- Choose

N>0 so that Ei~\(k*)NEker x- This is possible since x(F) is finite

and since k* is the product of a free abelian with a finite group. Now

choose m>0 as in the proposition above. Then (F*)mC\EEker x- It

follows that x factors via E—>F*/(F*)m; i.e., there is a character

X': F*^rQ/Z of order m such that x'\E = X- Let L = F(E1'm), the
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(finite) extension generated by mth roots of elements of £. It follows

from Kummer theory (see Artin [l ]) that there is an sEGiL/F) such

that s(a1/m) =allmxia) for all aEE. By the Cebotarev density theo-

rem there exist infinitely man}' primes ^ of Fsuch that 5 = HL/F)/%V),

the Artin symbol in the abelian extension L/F (see Serre [4, p. 34]).

Choose such a %t prime to m. Then if aEE and o = l mod ty, a is an

with power in the local field Fy. Hence the local degrees at %î of

Fiallm)/F are all one. It follows that s = ((L/F)/^) fixes a1'"1 and,

consequently, xia) = 1. Thus, the prime p of A that ty divides solves

our problem, and we have proved the theorem.

3. The proposition will be proved in a sequence of lemmas which

give some more specific information.

Lemma 1. Let F/k be a finite field extension and q an integer with

prime factorization JJ; p"*.

(a) iF*yr\k* = 0, [iF*)pi¡^k*].
(b) If d= [F: k] is prime to q, then (F*)«nA* = (A*)«.

Proof, (a) is obvious, (b): If xEiF*)qr\k*, take norms to obtain

xdEik*y. g.c.d. (d, q) = l=*xEik*y.

Now we fix some notation : Am denotes the field over A generated by

a primitive mth root of unity.

Lemma 2. If p^2, (A*eKnA* = (A*)*". (A*)2"nA* = (A*)2"PiA*
Eik*)2"~\ where a = mm (2, e). Hence, if A4CA, (A2e)2"nA* = (A*)2".

Proof. See Chevalley [2, pp. 37, 38].

For a prime p we define

eip) = eip, k)

to be the largest integer e such that, for each prime p of A above p, the

local field at p contains A „. Note that if e>0 and pp^2 this implies p

is ramified; hence eip) =0 for all but finitely many p.

Lemma 3. Suppose n^e = eip). Then for any m>0

i£y* nk*E (A*.)"- r\ a*,

unless p = 2 and e—1. In this case replace the right side by (A*)2"-2.

Proof. Write m = pTq with q prime to p. We apply Lemma 2 to

A9 to obtain (A*)p"nA*C(A*)p\ where A = ra for p odd, and which

we discuss below for p = 2. Choose / maximal so that kp/Ekq. If F

is the local field of A at a prime dividing p then FEFp/EFq. How-

ever, the big extension is unramified, and the small one totally rami-
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fied. Hence F=FP¡ so, by definition of e = e(p), we have/ge.

Suppose yEk* is such that yp Ekpf. If sEG(kq/kpi) then sy—yz

with zph = l. By definition of /, therefore, zpi = l. It follows that

syp =yp , so yp (E&p/- Writing y** = (yp )p we have therefore shown

that

(£)phr\ k*f c feV-' c (C)ph-',

the second inclusion ensuing from/Sie. We have thus descended the

field tower, kEkpfEkqEkm, and proved our assertion in the case

h = n. By Lemma 2 this is the case for p odd, and for p — 2 provided

kiEkq- In the remaining case we must have p = 2 and/=l, so kp/ = k

and we can take h=n — 1. The proof then yields (&£)2"P\&*E(k*)2 '
= (¿*)2"-2.

Combining Lemmas 1, 2, and 3 we have:

Corollary. Let

le(P) forp*2,

\e(2) + 2      for p = 2.

Then if m has prime factorization HPes pn(p), with n(p) ^f(p), and if

m0 = tipespf{r), then

(kt)m C\k* E (k*)m'mK

Since Wo depends only on the prime divisors of m, and not their

exponents, it is clear that the proposition of §2 follows from the

corollary.

References

1. E. Artin, Galois theory, Univ. Notre Dame, Notre Dame, Ind., 1944.

2. C. Chevalley, Deux théorèmes d'arithmétique, J. Math. Soc. Japan 3 (1951),

36-44.
3. W. H. Mills, Characters with preassigned values, Canad. J. Math. 15 (1963),

169-171.
4. J.-P. Serre, Corps locaux, Hermann, Paris 1962.

Columbia University


