
COMMUTATIVE ALGEBRAS SATISFYING
AN IDENTITY OF DEGREE FOUR

J. MARSHALL OSBORN1

In another paper [2] we have established the following result:

Theorem. Let A be a commutative inonassociative) algebra with

unity element over a field of characteristic not 2 or 3, and let A satisfy

an identity of degree ^ 4 not implied by the commutative law. Then A

satisfies at least one of the following three identities :

(1) ix2x)x = x2x2,

(2) 2(yx-x)x + yx* = 3(yx2)x,

(3) 2(y2x)x - 2(yx-y)x - 2(yx-x)y + 2(x2y)y - y2x2 + iyx)iyx) = 0.

In view of this theorem, the study of the structure of commutative

algebras with unity element satisfying an identity of degree g 4 is

immediately reduced to the study of algebras satisfying one of the

identities (l)-(3). The first of these identities is well-known to be

equivalent to power-associativity in a commutative algebra of char-

acteristic not 2, 3, or 5 and has been studied extensively [l ]. The iden-

tities (2) and (3) do not seem to have been investigated in the litera-

ture.

The purpose of the present paper is to study commutative rings

which satisfy (2). As we shall see in §1, this identity also arises in a

very natural way as a consequence of the Jordan identity, (x2y)x

= x2(yx). From this it is not difficult to see that a commutative ring

of characteristic relatively prime to 2 or 3 satisfies the Jordan identity

if and only if it satisfies both (1) and (2). For any characteristic one

can find commutative algebras with unity element satisfying either

(1) or (2), but which do not satisfy the Jordan identity. Thus the

class of commutative rings satisfying (2) is strictly larger than the

class of Jordan rings and is not included in the class of power-associa-

tive rings. The main results of this paper are summarized by the fol-

lowing two theorems:

Theorem 1. Let Abe a commutative ring satisfying (2) of character-

istic relatively prime to 2, and let A contain an idempotent e which is not

a unity element. Then A is a Jordan ring if and only if A „il) and Aei0)

Received by the editors August 1, 1963 and, in revised form, July 23, 1964.

1 The research for this paper was supported by National Science Foundation

Grant G-19052.

1114



AN IDENTITY OF DEGREE FOUR 1115

are Jordan rings. In particular, if A is simple, then it is a Jordan ring.

Theorem 2. Let A be a finite-dimensional algebra satisfying (2) of

characteristic not 2, and let every nonzero ideal of A contain an idem-

potent. Then A has a unity element and is the direct sum of simple

algebras.

In view of these results, the study of commutative algebras satisfy-

ing (2) is largely reduced to the question of determining the algebras

of degree one satisfying (2). It would also be interesting to know

whether a finite-dimensional algebra A satisfying (2) necessarily con-

tains a unique ideal N which is maximal with respect to the property

of not containing an idempotent, and whether Ae(l/2) +^4e(0) is con-

tained in N for any principal idempotent e of A.

1. Preliminary results. Linearizing (1) completely, we obtain

6 3 3

(4) 2 T (yx-z)w + 2 T y(xz-w) = 6 T (y-xz)w,

where each summation stands for the sum of all distinct terms ob-

tained from the given term by permuting x, z and w. Setting

H(y; x, z, w) = (y-xz)w + (y -zw)x + (y -wx)z, we may write (4) in the

form

H(z; x, y, w) + H(w; x, y, z) + H(x; y, z, w) = 3H(y; x, z, w)

after dividing by 2. Adding H(y; x, z, w) to this equation, we get

H(y; x, z, w) + H(z; x, y, w) + H(w; x, y, z) + H(w; x, y, z)

= iH(y; x, z, w)

the left side of which is symmetric in x, y, z, w. Thus, for character-

istic relatively prime to 2, the function H is symmetric in its argu-

ments, giving

H(x; y, z, w) = H(y; x, z, w),

or

(5) (x-yz)w + (x-zw)y + (x-wy)z = (yxz)w + (yzw)x + (y-wx)z.

Setting w = z = x in (5) yields (2) again, so that (5) is equivalent to

(2) for characteristic relatively prime to 2.

Since (5) is an immediate consequence of the linearized Jordan

identity, the class of rings studied here includes the class of Jordan

rings. On the other hand using (5), the linearized power-associative
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identity may be reduced to the Jordan identity, so that our class of

rings doesn't include any power-associative rings which are not al-

ready Jordan rings. The class of rings satisfying (2) are not all Jordan

rings, however, since it was shown in [2] that there exists a com-

mutative algebra with unity element over any field of characteristic

not 2 or 3 satisfying (2) but not x3x = x2x2.

Next, letting x = e (an idempotent) in (2), we get the relation

2R3e-3R2e+R. = 0, or R.(2R.-I)(R.-I)=0. Defining i4x = ;4.(X)
= {x\ xEA, xe=Xx}, it is easy to check that each ^4„(X) is an additive

subgroup of A, and that we have the additive direct sum decomposi-

tion

(6) A = A.il) + AJiX/2) + A.iO)

for each idempotent e of A. To discover what can be said about prod-

ucts of the ^Ix's, we set x = w = e, ye=jy, ze = kz in (5) to get iyz)R2,

+k2(yz)+j2iyz)=2kiyz)Re+jiyz), or

(7) (yz) [R\ - 2kRe + ik2 + j* - j)l] = 0.

Setting/ and k equal to 0, 1/2, 1 in all possible ways in (7), we get a

set of relations which can be restated as

Lemma 1. For a fixed e, products between the A\'s are governed by the

relations A^EAi, AlE-A-o, AiA0 = 0, AiAmEAm, AoAinEAm, and
A\,iEAi+Ao.

If u and v are orthogonal idempotents, we see from this lemma that

Avil)EAuiO), Auil/2)RvEAuil/2), and Aui0)RvEAui0). Hence for
yG¿L(l/2), we get yv-u = \yv = yu-v. Similarly yv-u =yu-v holds for

y in ^4„(1) or Aui0), to give the relation RVRU = RURV in the ring A.

This leads easily to the usual simultaneous decomposition of A with

respect to two or more orthogonal idempotents which is familiar from

Jordan theory.
To find out more information about how elements of the A\'s

multiply, we now set w = e, xe = ix, ye =jy, ze = kz in (5) to obtain

ix-yz)Re + kixz-y) + jixyz) = (yxz)ic, + kiyz-x) + iiyx-z),

or

(8) (y, z, x)[R. - kl] + (/ - i)ixyz) = 0.

Selecting appropriate values for i, j, k and adding subscripts to our

symbols to indicate which A\ they are assumed to belong to, equation

(8) yields the relations given in
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Lemma 2. Products of elements from different A\'s satisfy the follow-

ing relations:

yi/i(*i*0 = (yi/2Xi)zi + (yi/2Zi)x!,

yi/2(x0zo) = (yi/2Xo)z0 + (yi/2Zo)x0,

xi(yi/2zi/2) = [(xiyi/2)zi/2 + (xiZi/2)yi/2]i,

xoiyutfitf) = [(xoyi/2)zi/2 + (xoZi/2)yi/2]o,

[(*rVi/s)«i/2]o = [(xiZi/2)yi/2]o,

[(^oyi/2)zi/2]i = [(x0zi/2)yi/2]i,

(12) (xiyi/2)zo = xi(yi/2zo).

2. Proof of Theorem  1.  If we define A"(x, y, z, w) = (xy)(zw)

+ (xz) (yw) + (xw) (yz), the ring A will be Jordan if and only if

(13) H(x; y, z, w) = K(x, y, z, w)

for all ways of choosing x, y, z, w in Ay ^4i/2, A0. We begin with the

case xG^4i/2and y, z, wG^4i. Here, K(x, y, z, w) = (yx)(zw)+(xz)(yw)

+ (xw)(yz) = (xy-z)w + (xy-w)z + (xz-y)w + (xz-w)y + (xw-y)z

+ (xw-z)y = (x-yz)w+(x-yw)z+(x-wz)y = H(x; y, z, w), all using just

the first equation of (9).

Suppose next that x, yG.<4i/2 and z, wEAy Subtracting and adding

two terms and splitting two others into components, we get

(xy)(zw) + (xz)(yw) + (xw)(yz)

(14) = {(xy)(zw) — [(yz-w)x]i — [(yw-z)x]i+ [(xw)(yz) + (xz)(yw)]o}

+ {[(xw)(yz)]i + [(yz-w)x]i} + {[(xz)(yw)]i + [(yw-z)x]1}.

Since yz-w + yw-z = y-zw and [(xw)(yz) + (xz)(yw)]a — [(yz-w)x

+ (yw-z)x]o= [(y-zw)x]o using (9) and (11), the expression within the

first braces in (14) reduces to (yx)(zw) — [(y-zw)x]i+[(y-zw)x]o

= [(x-zw)y]i+ [(x-zw)y]o = (x-zw)y. On the other hand, the expres-

sions within the second and third set of braces of (14) are (x-yz)w

and (x-yw)z respectively using (10).

For the case xG-<4i and y, z, wEAi/2, we must first set x = e and

y, z, wG^i/2 in (5) to obtain

(yz)Re-w + (zw)Re-y + (yw)R,-z = %{(yz)w + (zw)y + (yw)z\,

or

(15) (yz)i-w + (zw)vy + (yw)t-z = (yz)a-w + (zw)0-y + (yw)o-z.

Using (9), (12) and (15), we can now establish (13):
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(xw)(yz)i -f ixw)iyz)o + (xy)(zw)i + (xy)(zw)0 + (xz)(yw)i + (xz)(ya>)o

= ixw)iyz)i -f [iyz)o-w]x + (xy)(zw)i + [(zw)0-y]x

+ ixz)iyw)i + [iyw)o-z]x

— ixw)iyz)i + [(yz)i-w]x + (xy)(zw)i + [(zw)i-y]x

+ ixz)iyw)i+ [iyw)i-z]x

= ix-yz)w + ix-zw)y + ix-yw)z.

Let us consider next the case when all four variables are in Am.

By symmetry, we need only check the component in Ai\

ixy)izw)i + ixz)iyw)i + (xw)(yz)i

= [((zw)i-x)y+ Hzw)i-y)x]1+ [Hyw)vx)z +'iiyw)i-z)x]i

+ [iiyz)vx)w + Oyz)i-w)x]i

= [Hzw)i-x)y + ((zw)o-y)x]i + [Oyw)i-x)z + Oyw)0-z)x]i

+ [((yz)i-x)w + Oyz)o-w)x]i

= [iizw)yx)y+ ((zw)o-x)y]i+ [iiyw)i-x)z + i(yw)0-x)z]i

+ [iiyz)vx)w+ iiyz)o-x)w]i

= [(x-zw)y]i+ [(x-yw)z]i + [(x-yz)w]i.

We have now established (13) for all cases in which the arguments

come from vli and ^4i/2, except for the case when all four arguments

lie in A\. By symmetry, (13) must also hold when the arguments come

from Ao and Ai/2, except when they all lie in A0. To prove the first

assertion of Theorem 1, it remains to show (13) in those cases which

involve Ai, Ai/2, and A0 all at once. But if xEAin, wEAo, and

y, zG-<4i, then 2£(x, y, z, w) = (xw)(yz), FT(x; y, z, w) = ix-yz)w, and

the two are equal by (12). The case with one argument each in Ai/t

and Ai and two arguments in A0 follows by symmetry. And finally,

if x, yEAi/i, zG-4i and wG^4o we compute

ixy)izw) + ixz)iyw) + ixw)iyz)

= [ixz)iyw)]o + [(xz)(yw)]i + [(xw)(yz)]0 + [(xw)(yz)]i

= [iwyz)x]o + [ixw)(yz)]o + [(xz)(yw)]i + [izy-w)x]i

= [(wyz)x]o + [ixw)iyz)]0 + [(xz)(yw)]i + [(z-yw)x]i

= [ix-yz)w + ix-yw)z + ix-zw)y.

To prove the last part of Theorem 1, it suffices to show that ^4i and

Ao are Jordan rings if A is simple. But (9) induces a homomorphism

of .¡4i into the ring of all Jordan endomorphisms on Am, and the
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kernel G of this homomorphism is an ideal of Ai which annihilates

both A1/2 and A0. Hence G is an ideal of A. Since e is not the unity

element of A by hypothesis, we have^, GC-^i?^, showing that

C\ = 0 and that Ai is a Jordan ring. By symmetry, the simplicity of A

also implies that A0 is a Jordan ring.

Suppose now that e is the sum of the orthogonal idempotents e'

and e". Then Theorem 1 implies that Ae(l) is a Jordan ring if and

only if Ae-(l) and ^4„"(0) are Jordan rings, and hence A is a Jordan

ring if and only if Ae<(l), Ae>>(l), and ^4e(0) are Jordan rings. By

inducting on this argument it is easy to establish the following

Corollary. Let Abe a commutative ring satisfying (2) of character-

istic relatively prime to 2, and let A contain the mutually orthogonal

idempotents ey ■ • • , enfor w 2:2. Then A is a Jordan ring if and only if

An(l), • ■ ■ , ^4e„(l), and f\"=1 Aei(0) are all Jordan rings.

3. Proof of Theorem 2. Let A be a finite-dimensional algebra

satisfying (2) of characteristic not 2, and suppose that some minimal

ideal B of A contain an idempotent. If ey ■ • • , en are a maximal

set of mutually orthogonal idempotents in B, then e = ei+ • • • +en

is a principal idempotent of B. Letting 73 = 73i-f-73i/2-f-£o be the de-

composition of B with respect to e, we observe that the decomposition

of A with respect to e is given by A =Bi+Bi/2+Ao, since eG73. As

in the proof of Theorem 1, we see that 73i and A 0 may be represented

as Jordan endomorphisms on £>i/2 using (9) and that the kernels G

and G of these representations are ideals of A. But the ideals G

and C0r\B of A are contained in B, so that C0r\B = 0 and either

G = 73or G = 0.

Suppose first that G = 0. Then Bi and B0 are Jordan algebras, and

hence B is a Jordan algebra by Theorem 1. Using the standard theory

of Jordan algebras, we may conclude that B contains a unique ideal

M maximal with respect to the property of not containing any idem-

potents, and that Bi/2+B0EM. But then MAEMBi+MBi,2 + MAa

EM+Bi/2Ao+BoA0EM+Bi/2+BoEM, showing that M is an ideal
of A. Since B is a minimal ideal of A, we have M=0 and Bi/2+B0 = 0.

Observing that the case G = B also leads to Bi/2+B0 = 0, we see that,

in either case, e is the unity element of B and A =B ®A0. We have

proved that any minimal ideal containing an idempotent in a finite-

dimensional algebra satisfying (2) is a direct summand.

It is now easy to establish Theorem 2 by induction on the dimen-

sion of A. If every ideal of A contains an idempotent, so does every

ideal of A0, and hence A0 has a unity element/ and is a direct sum

of simple algebras by inductive hypothesis. Then e+f is a unity ele-
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ment for A, and since B is simple, A is also a direct sum of simple

algebras.
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SOME PROPERTIES OF LOCALIZATION
AND NORMALIZATION

JOSEPH LIPMAN

In a recent note [l], S. Abhyankar has given some lemmas con-

cerning localization and normalization for noetherian rings without

nilpotent elements. We give a characterization of those rings in which

every prime ideal is maximal (Proposition 1) and deduce generaliza-

tions of Abhyankar's results (cf. Corollary 1 and Corollary 2).

Preliminaries. A ring will always be a nonnull commutative ring

with identity.

For properties of rings of quotients see [3, §§9-11 of Chapter IV].

Recall that if R is a ring with total quotient ring K, and if M is a

multiplicative system in R, then we may identify the ring of quo-

tients Rm with a subring of Km- When this is done, the total quotient

ring of Km is also the total quotient ring of Rm-

Denote by gu the canonical map of K into Km', the restriction of

this map to R is then the canonical map of R into Rm ; the restricted

map may also be denoted by gM without fear of confusion. If M con-

sists of all the powers of a single element /, then we write R¡, Kf, gf,

in place of RM, KM, gM-

If Q is a minimal prime ideal in R, and M is the complement of

Q in R, then QRm, being the only prime ideal in Rm, consists entirely

of zerodivisors (in fact, of nilpotents). Consequently, if xEQ, then

gMix) is a zerodivisor, and it follows easily that x is a zerodivisor.

Thus any minimal prime ideal in a ring consists entirely of zerodivisors.

Proposition 1. For a ring R, the following statements are equivalent;

(1) Every prime ideal in R is maximal.
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