
ON THE CENTER OF THE GROUP OF A LINK

KUNIO MURASUGI

1. Introduction. A group G is said to be finitely presented if it has a

finite presentation (P, i.e., (P consists of a finite number, « say, of gen-

erators and a finite number, m say, of defining relations. The de-

ficiency of (P, d((P), is defined as n—m. Then, by the deficiency,

d(G), of G is meant the maximum of deficiencies of all finite presenta-

tions of G. For example, it is well known that if G is a group with a

single defining relation, i.e., w= 1, then d(G) =« —1 [l, p. 207].

Recently we proved [5] that for any group G with a single defining

relation, if d(G) ^2 then the center, C(G), of G is trivial, and if d(G)

= 1 and if G is not abelian, then either C(G) is trivial or infinite cyclic.

This leads to the following conjecture.

Conjecture. For any finitely presented group G, ifd(G) ^ 2 then C(G)

is trivial, and if d(G) = 1 and if G is not abelian, then C(G) is either

trivial or infinite cyclic.

The purpose of this paper is to show that the conjecture is true for

the group of any link in 3-sphere S3. Namely we obtain :

Theorem 1. If a non-abelian link group G has a nontrivial center

C(G), then C(G) is infinite cyclic.

Remark. If d(G) ^2, then G must be a free product of two non-

trivial groups. Thus C(G) is trivial [9], [lO].

In the case of a knot, i.e., a link of multiplicity one, Theorem 1 is

an easy consequence of the fact that the center of the commutator

subgroup G' of G is trivial [6]. However this argument can not be

generalized to the case of links as it is. To make the argument run

parallel with the argument in the knot case, it is convenient to con-

sider rather than the commutator subgroup a certain subgroup H,

called here the canonical subgroup of G. The canonical subgroup might

have a nontrivial center and that is the only difficult point in the proof

of Theorem 1.

On the other hand, to some extent the nontriviality of the center

of a link group determines the link type itself. For example, if the

center of a knot group is generated by its meridian, then the knot is
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trivial.1 The link with this property is uniquely determined as follows.

Theorem 2. If the meridian of one component of a link I is contained

in the center of its group, then I is of the following form:

Figure 1

The link of this type is regarded as trivial in the sense that its

Hosokawa polynomial V(i) = l [3].

Moreover, the following two theorems, originally proved by Neu-

wirth [7], are also in this direction. Their simple proofs will be seen

in the last section.

Theorem 3. If the link group G is abelian, then the link I is of the

form:

Figure 2

Theorem 4. Le/G be the group of a link hUh. If C=(x,y: [x, (xy)"]),2
and if x and y are the meridians of h and /2 respectively, then ZiW/2 is of

the form (or its mirror image) :

« times twisted

(^3)
Figure 3

1 Instead of 3-sphere, if we take an orientable compact closed 3-manifold M,

then we can not always find a knot whose meridian generates the center of the funda-

mental group of the complementary of a knot in M. The problem of this kind has

been discussed in detail by Gluck in his paper: Tangled manifolds, Ann. of Math. 76

(1962), 62-72. The author acknowledges to the referee for bringing these facts to his

attention.

* [a, b] denotes the commutator of a and b.



1054 KUNIO MURASUGI [October

2. Lemmas.

Lemma 1. Let G be an arbitrary finitely presented group and let H

be a normal subgroup of G such that G/H is infinite cyclic. If the center

of G is not contained in H, then H is finitely generated.

Proof. Since G/H is abelian, H contains the commutator subgroup

G' of G. Thus we may assume without loss of generality that G has a

presentation (P,

(P = (/, xi, x2, ■ ■ ■ ,xn: rh r2, • ■ ■ , rm),

such that Xi(z.H,t(§:Hand that r¡ can be written in terms of elements

in H. (We have to only apply Tietze's transformations on the original

presentation of G, if necessary.)

Now since G/H=(t: ) and {f} forms a Schreier representative

system for G mod H, by using the well known Reidemeister-Schreier

method, we obtain a presentation of H as follows:

generators: x;,„ = t°Xit~a,    for 1 :£ * =» »> — °° < í < oo,

defining relations: r,-,, = r¡( ■ • -, xitk+e, • • ■),

f or 1 ^ / ^ m, — co < í < w,

where rj,o = rj( • • ■ ,xiik, ■ ■ ■) is the result of rewriting r,( • • ■ ,xit • ■ ■)

in terms of xiik.

Suppose that C(G) (£iï. Take an element z£iC(G) such that

z(^H. Since G/H^Z = (t: ), z can be written in the form z = htr,

hC¡:H and r a positive integer. Since z commutes with f, so does h.

Hence trp commutes with h for any integer p. Thus we see that

zp = hptrp, and since z commutes with each x¿, it follows that [hp, t]

= 1 and [hptrp, x¿] = l, í^i^n. Since these relations hold in H, we

have, for any integer p>0,

(2.1) hoh = 1    and    hoXi¡rph0 xii0 = 1,

and similarly, for any integer s,

h,hi+i — 1     and
(2.2) p —p   —i

h,Xi¡rp+t   h. Xi,, = 1,   for 1 ^ i ^ n,

where hü = h( • • • , xi¡k, ■ • ■ ) is the result of rewriting h in terms of

Xi,k and hs is the word obtained from ho by replacing xitk by xitk+s.

Let ßi and y{ be the minimum and maximum indices of xijk which

occur in h0. If we select a positive integer p so large that — rp <min ß{

and rp>ma.x yit then from (2.1) and (2.2) it follows that generators
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Xi,k (\uiun) for k^rp or k^—rp are words in generators x¿,_r3>+i,

• • • , x,,r3,_i (1 =í'á«)- That is, H is finitely generated.    Q.E.D.

Corollary (Neuwirth [8]). If a knot group G has a nontrivial

center, then G' is finitely generated.

Proof. As is well known, G is finitely presented and G/G' is infinite

cyclic. If the center of G has a nontrivial element that is contained

in G', then G' would have a nontrivial center. This is a contradiction

to Corollary 2 in [6].

Lemma 2. Suppose G and II satisfy the conditions in Lemma 1. If

d(G) =2 and C(H) is trivial, then C(G) is also trivial.

Proof. Since d(G) ^2,n — \>m. Let <p and^ be the natural homo-

morphisms from a free group P= (t, xi, ■ ■ ■ , x„_i: ) onto G and from

G onto G/H-=Z = (t: ) respectively, such that^(í)=í and ^(x¿) = l,

lg*á«-l.
Suppose C(G) is not trivial. Then the identity (2.1) is written as

follows, setting p = i,

(2.3) ht Xit      hxi   = YL Marqua , e# =» ± 1, 1 = * S n — 1.
i

Differentiating both sides with respect to x< in (2.3) at \p<p [2], we

have the following equations in an integral group ring JZ:

(2.4)   5iit(l-r)= E <*ij.\n(—)
Sij=k        L      \ dxj I.

1 áiá»- 1,

where ô,-,k denotes the Kronecker's delta and aj:k= 2'¿y-* e^UaQIZ.

From (2.4) it follows that a matrix identity

(2.5) (l-t')E = |k*ll 11^(^)1.
II      \ dxj / II

E denoting an identity matrix. Since n — 1 > m, the right hand side

must be zero, which is a contradiction.    Q.E.D.

3. Proofs of theorems. Let I be a link of multiplicity ¡x and let

G = 7Ti(S3 —/)• Give an orientation to 1. Let if be the normal subgroup

of G, an element of which is represented by a loop w in S3 — I such

that the sum of the linking number of w with each component of / is

zero. H will be called the canonical subgroup of G. Since G/H is

infinite cyclic, the proof of Theorem 1 in [6] is valid with slight

modification if G' is replaced by H. Thus we have

Lemma 3. (1) If H is finitely generated, then it is free of rank d, where
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d = 2h+p — 1, h denoting the genus of an oriented link.

(2) // H is not finitely generated, then either it is

(i) a nontrivial free product with amalgamation on a free group F¿

of rank d:
•••A*A*A*---

Fi   Fi

where the amalgamations are all proper and identical, or

(ii) locally free, and a direct limit of free groups of rank d.

Proof of Theorem 1. Give an orientation to a link I. Let H be the

canonical subgroup of the link group G. If C(H) is trivial, then C(G)

is either trivial or infinite cyclic, because G/H is infinite cyclic. Thus

we may assume that C(H) is not trivial.

First we observe that I consists of only two components and it

spans an orientable surface of genus 0. In fact, since C(H) is not

trivial, d must be = 1 for all cases in Lemma 3, which implies that

A = 0 and p. = 2.

Case 1. Suppose that H is finitely generated.

Since H is infinite cyclic by Lemma 3, G is a group extension of

Z = (a: ) by Z = (t: ). Thus G = (t,a: tat-x = a'), e=+l or -1. If

e=l, G is abelian, which is excluded by the assumption. If e= — 1,

G = (t,a: tat~1=a~1), which can not be the group of a link. For, the

reduced Alexander polynomial of G is 1+i. Thus this case can not

happen.

Case 2. Suppose that H is not finitely generated.

By Lemma 1, C(G)C_H, hence C(G)QC(H). Since C(H) is an

infinite cyclic group according to [4], C(G) is also infinite cyclic.

Thus the proof of Theorem 1 is completed.

Proof of Theorem 2. Give an orientation to a link / and consider

the canonical subgroup H of the link group G. Since H contains no

meridian of any component of I and since C(G) contains the subgroup

generated by a meridian x, it follows from Lemma 1 that H must be

finitely generated. Thus from Lemma 3, we see that if is a free group

of rank d. Since we may assume that G/HÇ=Z = (x: ), G is a group

extension of H by Z = (x : ). Thus G has the following presentation (P,

<S> = (x, ai, ■ ■ ■ , ad: [x, a<] i = 1, • • • , d).

Thus Z is a required form by Theorem D in [7].

Proof of Theorem 3. Give an orientation to / and consider the

canonical subgroup H of G. Since G is a finitely generated abelian

group, so is H. Hence by Lemma 3 (1), we see that H is free and

abelian, i.e., His infinite cyclic. Thus C(H) is not trivial. Hence the
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first half of the proof of Theorem 1 shows that the genus of / is 0 and

the multiplicity is two. That is, I spans an orientable band B. Let k

be a core3 of B. Since k is a deformation retract of B, wi(S3 — B)

= wi(S3 — k). However wi(S3 — B) =H and H is infinite cyclic. Thus k

is trivial by Dehn's Lemma. It is easy to show that the twisting

number of B must be one.    Q.E.D.

Proof of Theorem 4. Give an orientation to / such that xy is con-

tained in the canonical subgroup H of G. Since x is a meridian of h,

we may assume that G/H-^(x: ). Then the presentation of H is given

as follows:

generators: yk = xkyx~k+1,

defining relations : rk = xk[x, (xy)"]x~k

= yt+iVk+i,       k « 0, ± 1, • • • .

Thus H = • • • * (y0: )   „ *      (ya ) * • • •.
(yo=yi)

Hence C(H) = (y": ) which implies that the genus of / must be zero.

Thus I spans again an orientable band B and the core k of B is un-

knotted, because the group of k is isomorphic to G/(x: ) = (y: ). It

is also clear that the twisting number of B must be «.    Q.E.D.
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' The core k of B is a simple closed curve in B which is homeomorphic to one of the

boundary curves.


