SYMMETRY FOR THE ENVELOPING ALGEBRA OF A RESTRICTED LIE ALGEBRA

JOHN R. SCHUE

In a recent paper [1], Berkson has shown that the restricted enveloping algebra U of a restricted finite-dimensional Lie algebra L is a Frobenius algebra. By requiring that each transformation in the adjoint representation of L have zero trace (a condition satisfied by any nilpotent L or any L for which [L, L] = L) it turns out that U is actually symmetric. A proof of this is given below.

We let L be a restricted Lie algebra which is finite-dimensional over a field K of characteristic p>0. For $x\in L$ let D_x be defined on L by $D_xy=[x,y]$, and let $\mathrm{Tr}(D_x)$ denote the trace of D_x . U will denote the restricted enveloping algebra of L as defined and discussed in [2, pp. 185-192], and U^* denotes the dual space of U over K. For $u\in U$ and $\phi\in U^*$ define $u\phi$ and ϕu by $(u\phi)(v)=\phi(vu)$, $(\phi u)(v)=\phi(uv)$ for all $v\in U$. We choose a fixed ordered basis x_1, \dots, x_n of L and thus $\{x_1^{i_1} \cdots x_n^{i_n}: 0 \le i_j \le p-1\}$ is a basis of U. For each such basis element of U we define the degree as $\sum i_j$ and for a linear combination of basis elements which appear with nonzero coefficients. Let ϕ_0 be defined as the linear functional on U which vanishes at each basis element except that $\phi_0(x_1^{p-1} \cdots x_n^{p-1}) = 1$. The main result of [1] is that the linear mapping $u \rightarrow u\phi_0$ from U to U^* is one-one and onto. The result to be proved here is the following:

THEOREM. $u\phi_0 = \phi_0 u$ for all $u \in U$ iff $Tr(D_x) = 0$ for all $x \in L$. Thus, if the latter condition is satisfied, U is symmetric, i.e., the bilinear form $(u, v) = \phi_0(uv)$ is symmetric, nondegenerate, and (uv, w) = (u, vw) for all u, v, w in U.

The proof of the theorem will follow from several lemmas.

LEMMA 1. Suppose $m \leq n(p-1)$ and $y_1, \dots, y_m \in L$. Then $\phi_0(y_1, \dots, y_m) = \phi_0(y_{i_1}, \dots, y_{i_m})$ for any permutation i_1, \dots, i_m of $1, \dots, m$. If m < n(p-1) then $\phi_0(y_1, \dots, y_m) = 0$.

PROOF. By using techniques like those used in [2] it follows that the degree of y_1, \dots, y_m is no greater than m and that $y_1, \dots, y_m = y_{i_1} \dots y_{i_m} + v$ where v has degree less than m.

Received by the editors September 8, 1964.

LEMMA 2. For u, v in U let [u, v] = uv - vu. Then for $0 \le m < p$ and x, y in L, $[x, y^m] = \sum_{1}^m C_k (-1)^{k_y m - k} D_y^k(x)$.

PROOF. The proof is by induction on m. The case m=1 is immediate; we assume the result as stated to prove it for m+1. Now $[x, y^{m+1}] = [x, y^m y] = y^m [x, y] + [x, y^m] y = -y^m D_u x + y [x, y^m] - [y, [x, y^m]]$. If the induction hypothesis is used on each of the last two terms, together with $[y, y^{m-k}D^k x] = y^{m-k}D^{k+1}_y x$, a straightforward computation will give the desired conclusion.

LEMMA 3. Let $u_0 = x_1^{p-1} \cdot \cdot \cdot x_n^{p-1}$. For $x \in L$ we have $\phi_0(u_0x) = \phi_0(xu_0) + \operatorname{Tr}(D_x)$.

PROOF. Let $D_x x_i = \sum \lambda_{ji} x_j$. By virtue of Lemma 2, $x_i^{p-1} x = x x_i^{p-1} + x_i^{p-2} [x, x_i] + u_i$ where u_i has degree less than p-1. From Lemma 1 we obtain $\phi_0(x_1^{p-1} \cdots x_i^{p-1} x \cdots x_n^{p-1}) = \phi_0(x_1^{p-1} \cdots x_i^{p-1} \cdots x_n^{p-1}) + \sum \lambda_{ji} \phi_0(x_1^{p-1} \cdots x_i^{p-2} x_j \cdots x_n^{p-1})$. However, since $x_j^p \in L$, each of the terms in the last summation is zero for $j \neq i$. Thus the sum reduces to $\lambda_{ii} \phi_0(u_0) = \lambda_{ii}$. An induction argument can then be used to conclude that $\phi_0(u_0x) = \phi_0(xu_0) + \sum \lambda_{ii} = \phi_0(xu_0) + \operatorname{Tr}(D_x)$.

PROOF OF THE THEOREM. For each $u \in U$ there is a unique $u^* \in U$ such that $u^*\phi_0 = \phi_0 u$. The mapping $u \to u^*$ is clearly linear and is one-one for if u^* is zero then $(v\phi_0)(u) = 0$ for all $v \in U$ and this implies u = 0. Moreover, it is an automorphism of the associative algebra U since $(uv)^*\phi_0(w) = \phi_0(uvw) = \phi_0(vwu^*) = \phi_0(wu^*v^*) = (u^*v^*)\phi_0(w)$ for all w implies $(uv)^* = u^*v^*$.

Suppose $\operatorname{Tr}(D_x)=0$ for all $x\in L$. Then $\phi_0(xu_0)=\phi_0(u_0x)$. From Lemma 1 we have $\phi_0(xu)=\phi_0(ux)$ for any basis element u of smaller degree than n(p-1). Hence the same equation holds for all u and this implies $x^*=x$ for all $x\in L$. Since U is generated by 1 and L we have $u^*=u$ for all $u\in U$.

Conversely, if $u\phi_0 = \phi_0 u$ for all u then $x = x^*$ for all $x \in L$ and Lemma 3 shows that $Tr(D_x) = 0$.

REFERENCES

- 1. Astrid J. Berkson, The u-algebra of a restricted Lie algebra is Frobenius, Proc. Amer. Math. Soc. 15 (1964), 14-15.
 - 2. Nathan Jacobson, Lie algebras, Interscience, New York, 1962.

MACALESTER COLLEGE