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In a recent paper [l], Berkson has shown that the restricted

enveloping algebra U of a restricted finite-dimensional Lie algebra

£ is a Frobenius algebra. By requiring that each transformation in

the adjoint representation of £ have zero trace (a condition satisfied

by any nilpotent £ or any £ for which [£, £] =£) it turns out that

U is actually symmetric. A proof of this is given below.

We let £ be a restricted Lie algebra which is finite-dimensional

over a field K of characteristic p> 0. For xEL let Dx be defined on £

by Dxy= [x, y], and let Tr(£\c) denote the trace of Dx. U will denote

the restricted enveloping algebra of £ as defined and discussed in [2,

pp. 185-192], and U* denotes the dual space of U over K. For uE U

and cbEU* define u<p and cbu by (u<p)(v) =<p(vu), (<pu)(v) =<p(uv) for all

vE U. We choose a fixed ordered basis xy • • • , xn ol L and thus

{x*i • ■ • x%: Qúij=ip — 1} is a basis of U. For each such basis ele-

ment of U we define the degree as TÀî and for a linear combination

of basis elements define the degree as the maximum of the degrees of

basis elements which appear with nonzero coefficients. Let <po be

defined as the linear functional on U which vanishes at'each basis ele-

ment except that c/>o(xf-1 • • • x£-1) = 1. The main result of [l ] is that

the linear mapping u—»mc/>o from U to U* is one-one and onto. The

result to be proved here is the following:

Theorem. uxpo=<boU for all uE U iff Tr(Dx) =0 for all xEL. Thus,
if the latter condition is satisfied, U is symmetric, i.e., the bilinear form

(u, v)=<po(uv) is symmetric, nondegenerate, and (uv, w) = (u, vw) for

all u, v, w in U.

The proof of the theorem will follow from several lemmas.

Lemma 1. Suppose m g n(p — 1) and yy ■ • • , ym E L. Then

<Po(yu • • • ,ym) =<bo(yiv • • • , y*m) for any permutation iy ■ ■ ■ , im of

1, • • • , m. If m<n(p — l) then <p0(yy ■ • • ,ym)=0.

Proof. By using techniques like those used in [2] it follows that

the degree of yi, • • • , ym is no greater than m and that yy • ■ • , ym

= yh ' ' ' yim~^~v where v has degree less than m.
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Lemma 2. For u,v in U let [u, v] =uv—vu. Then for 0^m<p and

x, y in L, [x, ym] = Y^mCki-l)^n-kDlix).

Proof. The proof is by induction on m. The case m = 1 is immedi-

ate; we assume the result as stated to prove it for ra + 1. Now

[x, ym+1]= [x, ymy] = ym[x, y] + [x, ym]y = — ymDvx + y[x, ym]

— [y> [x, ym]]- H the induction hypothesis is used on each of the last

two terms, together with [y, ym~kDkx]=ym~kDl+1x, a straightforward

computation will give the desired conclusion.

Lemma 3. Let ua = x%~1 • • • x£-1. For xEL we have r/>0(«0x) =r/>0(xMo)

+Tr(L\).
i

Proof. Let Dxxi=YJ\jiXj. By virtue of Lemma 2, xf_1x=xxf~

+xf_2[x, Xi]+M< where Ui has degree less than p — 1. From Lemma 1

we obtain 0o(x?_1 • • • x?-1x • • • x£-1) =<¿o(xTl • • • xx?""1 ' • • *TX)

+ YjXjifpoixi'1 • • • x%~2Xj • ■ • x£_1. However, since xJEL, each of

the terms in the last summation is zero for/^t. Thus the sum reduces

to \i,<boiuo) =X¡j. An induction argument can then be used to conclude

that <j>oiuox) =^oixuo) + Y^Kii=<j)oixuo)+TriDx).

Proof of the theorem. For each uE U there is a unique u*EU

such that u*<ba=<boU. The mapping u-^u* is clearly linear and is one-

one for if u* is zero then iwj>o)(u)=0 for all vEU and this implies

m = 0. Moreover, it is an automorphism of the associative algebra U

since iuv)*<poiw) =<¡>oiuvw) =cbo(vwu*) =<j>o(wu*v*) = (u*v*)<bo(w) for

all w implies (uv)* = u*v*.

Suppose Tr(Dx)=0 for all xEL. Then <^>0(xmo) =<¡>o(uox). From

Lemma 1 we have (boixu) =<poiux) for any basis element u of smaller

degree than nip — 1). Hence the same equation holds for all u and this

implies x* =x for all xEL. Since U is generated by 1 and L we have

u* = u for all uE U.
Conversely, \iu<bo=<PoU for all u then x = x* for all xEL and Lemma

3 shows that TriDx) =0.
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