ON A CLASS OF HOLOMORPHIC FUNCTIONS¹

NICOLAS ARTÉMIADIS

I. Introduction. In Part I of this paper, some inequalities, concerning functions considered in Theorem 2, are obtained. In Part II we introduce the class A_p . A function $F(z) = z + \sum a_n z^n$, $(z = re^{it})$, belongs to A_p if it is holomorphic in |z| < 1, if the $\{a_n\}$ is real and if there exist a non-negative integer p and real numbers r_p , B_p such that:

$$\inf_{t,r} \left\{ \sin t \cdot I[F(z)/(1-z)^p] \right\} = B_p \quad (t = \text{real, } 0 \le r_p \le r < 1).$$

For $p = r_p = B_p = 0$ we get the class \mathfrak{C} of typically real functions [3].

Theorems concerning the coefficients $\{a_n\}$ of F(z), tauberian theorems and summability methods for $\sum a_n$ are obtained.

We denote by $T(f) = \phi(t) = \int_{-\infty}^{\infty} f(x)e^{itx}dx$, the Fourier transform of $f \in L_1$.

THEOREM a [1, p. 20]. If $f \in L_1$, $|f(x)| \le M$ in $-h \le x \le h$, h > 0, and $\phi(t) \ge 0$, then $\phi \in L_1$.

The above theorem can be easily generalized as follows:

THEOREM 1. If $f \in L_1$, $|f(x)| \leq M$ in $-h \leq x \leq h$, h > 0 and if $\alpha \leq \arg \phi(t) \leq \alpha + (\pi/2)$, then $\phi \in L_1$.

PROOF. We may assume $\alpha = 0$. If $\alpha \neq 0$ we consider the function $f_{\alpha}(x) = f(x)e^{-i\alpha}$ for which $0 \leq \arg T(f_{\alpha}) \leq \pi/2$. Next put

$$F(x) = [f(x) + \overline{f(-x)}]/2, \qquad G(x) = [f(x) - \overline{f(-x)}]/2i.$$

We have

$$T(F) = R_{\epsilon}T(f) \ge 0, \qquad T(G) = IT(f) \ge 0.$$

It follows from Theorem a that $R_eT(f) \in L_1$, $IT(f) \in L_1$. Therefore $\phi \in L_1$.

Notice that since $R_{\epsilon}T(f)$, IT(f) both belong to L_1 , the inversion holds, so that

$$f(x) + \overline{f(-x)} = (1/\pi) \int_{-\infty}^{\infty} R_e T(f) e^{-itx} dt \quad \text{a.e.},$$

Presented to the Society, August 27, 1964; received by the editors April 8, 1964 and, in revised form, July 1, 1964.

¹ Part of this research has been done under a grant of the University of Wisconsin Alumni Research Foundation during the summer of 1963.

$$f(x) - \overline{f(-x)} = (i/\pi) \int_{-\infty}^{\infty} IT(f)e^{-itx} dt$$
 a.e.

THEOREM 2. Hypothesis. $f \in L_1$; f(x) = 0 for x < 0; put $\psi(t) = \int_0^\infty f(x) \sin tx \, dx$, $\sup_t R_e[t\psi(t)] = A$, $\inf_t R_e[t\psi(t)] = B$ and suppose A, B finite.

Conclusion. For $x \ge 0$

- (a) If A = 0 then $2R_e \int_0^\infty f(y) dy \le R_e \int_0^x f(y) dy \le 0$.
- (b) If B = 0 then $0 \le R_e^x \int_0^x f(y) dy \le 2R_e \int_0^\infty f(y) dy$.
- (c) If $A \neq 0$ then $R_e \int_0^x f(y) dy \leq Ax$.
- (d) If $B \neq 0$ then $R_e \int_0^x f(y) dy \ge Bx$.

PROOF. Consider the functions

$$f_1(x) = (1/2i)[f(x) - f(-x)],$$

$$g(x) = \begin{cases} e^{-\lambda x} & \text{for } x \ge 0 \\ 0 & \text{for } x < 0 \end{cases} \quad \lambda > 0,$$

$$g_1(x) = (1/2i)[g(x) - g(-x)].$$

We find:

$$T(g_1) = t/(t^2 + \lambda^2), \quad T(f_1) = \psi(t), \quad T[Ae^{-\lambda|x|}/2\lambda] = A/(\lambda^2 + t^2).$$

Also

$$R_{e}T[(Ae^{-\lambda|x|}/2\lambda) - f_{1} * g_{1}] = R_{e}[(A - t\psi(t))/(t^{2} + \lambda^{2})]$$

$$= [A - R_{e}t\psi(t)]/(t^{2} + \lambda^{2}) > 0,$$

(2.2)
$$R_{e}T[f_{1} * g_{1} - (Be^{-\lambda|x|}/2\lambda)] = R_{e}[(t\psi(t) - B)/(t^{2} + \lambda^{2})] = [R_{e}t\psi(t) - B]/(t^{2} + \lambda^{2}) \ge 0.$$

We have:

(2.3)
$$f_1 * g_1 = (1/4) \int_0^\infty [f(x+y) - f(-y-x) - f(x-y) + f(y-x)] e^{-\lambda y} dy$$
.

It follows from (2.1), (2.2) that the functions:

$$(Ae^{-\lambda|x|}/2\lambda) - R_e[f_1 * g_1], \qquad R_e[f_1 * g_1] - (Be^{-\lambda|x|}/2\lambda)$$

are bounded, continuous and they have non-negative Fourier transforms, which, by Theorem a, belong to L_1 . Therefore the inversion formula holds everywhere:

$$\frac{Ae^{-\lambda|x|}}{2\lambda} - R_e[f_1 * g_1] = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{A - R_e t \psi(t)}{t^2 + \lambda^2} e^{-ixt} dt \quad \text{everywhere}$$

$$R_e[f_1 * g_1] - \frac{Be^{-\lambda|x|}}{2} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{R_e t \psi(t) - B}{t^2 + \lambda^2} e^{-ixt} dt \quad \text{everywhere.}$$

By taking the absolute values of both members we get:

$$|(Ae^{-\lambda|x|}/2\lambda) - R_{e}[f_{1} * g_{1}]| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{A - R_{e}t\psi(t)}{t^{2} + \lambda^{2}} dt$$

$$= (A/2\lambda) - R_{e}[f_{1} * g_{1}]_{x=0},$$

$$|R_{e}[f_{1} * g_{1}] - (Be^{-\lambda|x|}/2\lambda)| \leq \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{R_{e}t\psi(t) - B}{t^{2} + \lambda^{2}} dt$$

$$= R_{e}[f_{1} * g_{1}]_{x=0} - (B/2\lambda).$$

For x = 0, we get from (2.3):

$$R_e[f_1 * g_1]_{x=0} = (1/2)R_e \int_0^\infty f(y)e^{-\lambda y} dy.$$

Suppose A = 0. Then (2.4) becomes:

$$|R_e[f_1 * g_1]| \leq -R_e[f_1 * g_1]_{x=0}$$

or

$$\left| R_{e}(1/4) \int_{0}^{\infty} [f(x+y) - f(-y-x) - f(x-y) + f(y-x)] e^{-\lambda y} \, dy \right|$$

$$\leq - (1/2) R_{e} \int_{0}^{\infty} f(y) e^{-\lambda y} \, dy.$$

The conclusion (a) follows if in the last inequality we let $\lambda \to 0+$. If B=0, then conclusion (b) follows from (2.5) in the same way. Suppose now $A \neq 0$. We get from (2.4):

$$\frac{Ae^{-\lambda|x|} - A}{2\lambda} - R_{\bullet} \frac{1}{4} \int_{0}^{\infty} \left[f(x+y) - f(-y-x) - f(x-y) + f(y-x) \right] e^{-\lambda y} \, dy$$

$$\leq -R_{\bullet} \frac{1}{2} \int_{0}^{\infty} f(y) e^{-\lambda y} \, dy$$

and the conclusion (c) follows if $\lambda \rightarrow 0+$. If $B \neq 0$, conclusion (d) follows from (2.5) in a similar way.

COROLLARY. Hypothesis. $f \in L_1$; f(x) = 0 for x < 0; put $\psi(t) = \int_0^\infty f(x) \sin tx \, dx$, $\sup_t I[t\psi(t)] = A^*$, $\inf_t I[t\psi(t)] = B^*$, and suppose A^* , B^* finite.

Conclusion. The conclusion of Theorem 2 holds if we replace A, B, R_* by A^* , B^* , I respectively.

PROOF. Put $\psi^*(t) = \int_0^\infty (-i)f(x) \sin tx \, dx$. We have $I[t\psi(t)] = R_e[t\psi^*(t)]$ and the corollary follows if in the conclusion of Theorem 2 we replace f by -if.

II. Definition of the class \mathfrak{C} of typically real functions [3]. A function $F(z) = z + \sum_{n=2}^{\infty} a_n z^n$ $(z = re^{it})$ is said to be typically real in the circle |z| < 1, if it is holomorphic in this circle and if F(z) is real for real values of z, but for no other values in |z| < 1.

It follows from the above definition that the coefficients $\{a_n\}$ are real. Also, one can prove, that $F \in \mathfrak{C}$ if and only if, sign IF(z) = sign Iz. This last relation is equivalent to: $\sin t \cdot IF(re^{it}) \ge 0$.

As we mentioned in the introduction of this paper, the class A_p is a generalization of the class \mathbb{C} . More precisely, we notice that \mathbb{C} is a proper subclass of A_0 . In fact, $F(z) = \left[z/(1-z)\right] + 2z^2$ belongs to A_0 but not to \mathbb{C} .

Also, if $F \in A_p$, we have for r < 1 and t = 0, $\sin t \cdot I[F(z)/(1-z)^p] = 0$; therefore $B_p \le 0$.

THEOREM 3. If $F \in A_0$, then:

- (a) $|a_{n+1}-a_{n-1}| \leq 2-4B_0$,
- (b) $|a_n| \leq n(1-2B_0)$,
- (c) $1 + a_2 + \cdots + a_{n-1} + (a_n/2) \ge B_0 n$ where $n = 1, 2, 3, \cdots, a_0 = 0$.

Proof. Put:

$$f(x) = \begin{cases} a_n r^n + a_{n+1} r^{n+1} & \text{for } n \le x < n+1, \\ 0 & \text{for } x < 0, \end{cases}$$

$$n = 0, 1, 2, \dots, 0 \le r_0 \le r < 1.$$

$$\psi(t) = \int_0^\infty f(x) \sin tx \, dx.$$

We find:

$$t\psi(t) = 2 \sin t \cdot IF(z)$$

$$= [r + a_2r^2 \cos t + (a_3r^3 - r) \cos 2t + (a_4r^4 - a_2r^2) \cos 3t + \cdots]$$

$$\geq 2B_0.$$

Multiplying both sides by $1 \pm \cos nt$ and integrating from 0 to 2π we get the inequality:

$$\pi r[2 \pm (a_{n+1} - a_{n-1}r^{-2})r^{n-1}] \ge 2B_0 \cdot 2\pi$$
 or $|a_{n+1} - a_{n-1}| \le 2 - 4B_0$, $(n \ge 1)$. Next put $B_r = \inf_{t} [b\psi(t)]$. We have

 $B_r \ge 2B_0$. The function f satisfies the assumptions of Theorem 2, therefore $r + a_2 r^2 + \cdots + a_{n-1} r^{n-1} + (a_n r^n/2) \ge B_r n/2 \ge B_0 n$. The conclusion (c) follows if we let $r \rightarrow 1 -$.

Note. For $r_0 = B_0 = 0$ we get the well-known inequalities: $|a_n| \le n$, $1+a_2+\cdots+a_{n-1}+(a_n/2)\geq 0$ for the functions of the class \mathfrak{C} ([2], [3]).

An analogous theorem can be given for functions of the class A_p $(p \ge 1)$.

Put $s_n^{(0)} = a_n$, $s_n^{(p)} = \sum_{i=1}^n s_i^{(p-1)}$ $(p = 1, 2, \cdots)$. It is easy to see that if $F \in A_p$ then $F_p(z) = \sum_{n=1}^\infty s_n^{(p)} z^n$ belongs to A_0 . Applying Theorem 3 to F_{p} we get:

THEOREM 3*. If $F \in A_n$ then

(a)
$$\left| s_{n+1}^{(p)} - s_{n-1}^{(p)} \right| \le 2 - 4B_p$$
,

(b)
$$\left| s_n^{(p)} \right| \le n(1 - 2B_p) \ (n \ge 1, s_0^{(p)} = 0),$$

(b)
$$|s_n^{(p)}| \le n(1 - 2B_p) \ (n \ge 1, s_0^{(p)} = 0),$$

(c) $1 + s_2^{(p)} + s_3^{(p)} + \dots + s_{n-1}^{(p)} + (s_n^{(p)}/2) \ge B_p n.$

THEOREM 4. If $F \in A_0$ and $F(r) \sim (1-r)^{-1}$ then

$$\sum_{k=1}^{n} (s_k^{(1)}/k) \sim n \ (n \rightarrow \infty).$$

Proof. By (c) of Theorem 3 we have: $(s_n^{(1)}/n) - (a_n/2n) - B_0 \ge 0$. Also

$$\sum_{n=1}^{\infty} \left[(s_n^{(1)}/n) - (a_n/2n) - B_0 \right] r^n \sim \left[(1 - B_0)/(1 - r) \right].$$

It follows from Hardy-Littlewood's theorem [4, p. 226]:

$$\sum_{k=1}^{n} \left[(s_k^{(1)}/k) - (a_k/2k) - B_0 \right] \sim n(1 - B_0) \qquad (n \to \infty)$$

or

(*)
$$\sum_{k=1}^{n} \left[(s_k^{(1)}/k) - (a_k/2k) \right] \sim n \qquad (n \to \infty).$$

By (a) of Theorem 3 we have:

$$2-4B_0+a_{n+1}-a_{n-1}\geq 0,$$

$$\sum_{n=1}^{\infty} (2 - 4B_0 + a_{n+1} - a_{n-1}) r^n \sim [(2 - 4B_0)/(1 - r)].$$

Applying again Hardy-Littlewood's theorem we get:

$$\lim_{n\to+\infty} \left[(a_n + a_{n+1})/n \right] = 0.$$

We write:

$$\frac{a_{n+1}+a_{n+2}}{n}=\frac{n+1}{n}\left(\frac{a_{n+1}}{n+1}+\frac{a_{n+2}}{n+2}\right)+\frac{a_{n+2}}{n(n+2)}.$$

Since $|a_n| \le n(1-2B_0)$ we have $\lim_{n\to\infty} [a_{n+2}/n(n+2)] = 0$. Therefore $\lim_{n\to\infty} [(a_{n+1}+a_{n+2})/n] = 0 = \lim_{n\to\infty} [(a_{n+1}/n+1) + (a_{n+2}/n+2)]$,

$$1 + (a_2/2) + (a_3/3) + \cdots + (a_n/n) = 0(n) \quad (n \to + \infty),$$

and the conclusion of the theorem follows from (*).

To generalize Theorem 4 we state the following:

THEOREM b [4, Ex. 8, p. 242]. If $a_n \ge 0$ and $(\sum a_n x^n) \sim (1-x)^{-\alpha}$, $(\alpha > 1)$ then $\sum_{k=1}^{n} a_k \sim (n^{\alpha}/\Gamma(\alpha+1))$, $(n \to \infty)$.

THEOREM 4*. If $F \in A_p$ and $F(r) \sim (1-r)^{-\alpha}$, $(\alpha > 1)$ then $\sum_{k=1}^{n} (s_k^{p+1})/k > (n^{\alpha+p}/\Gamma(\alpha+p+1))$, $(n \to \infty)$.

PROOF. Put $F_p(x) = \sum_{n=1}^{\infty} s_n^{(p)} z^n$. Notice that $F_p \in A_0$, $F_p(r) \sim (1-r)^{-(\alpha+p)}$ and use Theorems 3 and b. The proof is very similar to the proof of Theorem 4.

The following theorem provides a summability method for $\sum a_n$, where $F(z) = \sum a_n z^n$ belongs to A_p . A similar theorem is given in [2] for the class \mathfrak{C} .

THEOREM 5. If $F \in A_p$, $(p \ge 1)$ and $\lim_{r\to 1^-} F(r) = F(1)$ exists and is positive then:

$$\lim_{n\to\infty}\frac{\Gamma(p+1)}{n^{p+1}}\left[1+s_2^{(p+1)}+\cdots+s_{n-1}^{(p+1)}+(s_n^{(p+1)}/2)\right]=F(1).$$

PROOF. From (c) of Theorem 3* it follows that:

$$k_n = s_n^{(p+1)} - (s_n^{(p)}/2) - B_p n \ge 0.$$

If p>1 then $\sum_{n=1}^{\infty} k_n r^n \sim F(1)/(1-r)^{p+1}$. If p=1 then $\sum_{n=1}^{\infty} k_n r^n \sim (F(1)-B_p)/(1-r)^2$. In both cases we get the conclusion of the theorem by applying Theorem b to the function $\sum_{n=1}^{\infty} k_n r^n$.

Note 1. Theorem 5 still holds if $F \in \mathbb{C}[2]$. But the proof of Theorem 5 does not apply if p = 0, $B_p \neq 0$; therefore the question whether or not Theorem 5 holds in this case is open.

Note 2. Theorems similar to those given for the class A_p could be obtained for functions $F(z) = z + \sum a_n z^n$ where the $\{a_n\}$ are not neces-

sarily real $(a_n = \alpha_n + i\beta_n)$. One has to make the necessary assumptions on

$$\sin t \cdot I(\sum \alpha_n z^n), \quad \sin t \cdot I(\sum \beta_n z^n).$$

BIBLIOGRAPHY

- 1. S. Bochner and K. Chandrasekharan, Fourier transforms, Princeton Univ. Press, Princeton, N. J., 1949.
- 2. S. Mandelbrojt, Quelques remarques sur les fonctions univalentes, Bull. Sci. Math. 58 (1934), 185-200.
- 3. W. W. Rogosinski, Über positive harmonische Entwicklungen und typisch reele Potenzreihen, Math. Z. 35 (1932), 93-121.
 - 4. E. C. Titchmarch, Theory of functions, 2nd ed., Oxford Univ. Press, Oxford.

University of Wisconsin-Milwaukee