
ON A CLASS OF HOLOMORPHIC FUNCTIONS1

NICOLAS ARTÉMIADIS

I. Introduction. In Part I of this paper, some inequalities, concern-

ing functions considered in Theorem 2, are obtained. In Part II we

introduce the class Av. A function F(z) ~z+ 22a„z", (z = reu), belongs

to Ap if it is holomorphic in | e| < 1, if the {an} is real and if there exist

a non-negative integer p and real numbers rp, Bp such that:

inf {sin I-l[F(z)/(I - z)p]} = Bp    (t = real, Oár,ár<[).

For p=rp = Bp = 0 we get the class C of typically real functions [3].

Theorems concerning the coefficients \a„} of F(z), tauberian theo-

rems and summability methods for 23a» are obtained.

We denote by T(f) =<p(t) = f1a,f(x)eilxdx, the Fourier transform of

feu
Theorem a [l, p. 20]. IffELy |/(x)| f^Min —h^x^h, h>0,and

<p(t)è0, thencpELy

The above theorem can be easily generalized as follows:

Theorem 1. If fELy \f(x)\ ^M in —h^x^h, h>0 and if
agarg <b(t) ¿a + (ir/2), then <pELy

Proof. We may assume a = 0. If a^O we consider the function

/«(*) =f(x)e~ia for which Ogarg T(fa) £w/2. Next put

F(x) = [f(x) +fX^xj}/2,       G(x) = \f(x) - 7F*)]/2i.

We have

F(F) = ReTif) ä; 0,        TiG) = ITif) 5; 0.

It follows from Theorem a that ReT(f)ELy IT(f)ELy Therefore

<bELy
Notice that since ReT(f), IT(f) both belong to Ly the inversion

holds, so that

roo
ReT(f)<r«* dt      a.e.,
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/OO

ITif)e-iix dt        a.e.
-00

Theorem 2. Hypothesis, f E Li; fix) = 0 for x < 0; put ^(/)
= Jo'fix) sin txdx, sup¡ Re[tpit)} =A, inf, Re[bpit)]=B and suppose

A, B finite.
Conclusion. For x ^ 0

(a) IfA=0 then 2R.fïfiy)dy ̂ Refofiy)dy g 0.
(b) 7/5 = 0 then 0 è RxeJofiy)dy Ú 2RefZfiy)dy.
(c) If A pi 0 then R.fSf(y)dy£Ax.
(d) If B^O then Refofiy)dy^Bx.

Proof. Consider the functions

fiix) = il/2i)[fix)-fi-x)],

e'**   for x = 0
g(x) = ~ X > 0,

0        for x < 0

giix) = il/2i)[gix) - gi-x)].

We find :

Tigi) - //(¿2 + X2),    F(/0 = *(<),    r[¿r*M/2X] = ¿/(A2 + t2).

Also

2?.r[(4e-x>«'/2X) -/i* gj = Re[iA - tpit))/H2 + X2)]

(2-1) = [A - R„m)}/it2 + A2) > 0,

(2 2)   *'rtA * gl ~ (5e~XW/2X)] = Ä'[(^W - 5)/(¿2 + X2)3

- [-W) - B]/it2 + X2) ̂  0.

We have:

f* oo

(2.3)   /,*gl=(l/4) |/(x+y)-/(-y-x)-/(x-y)+/(y-x)]e-^¿y.
J o

It follows from (2.1), (2.2) that the functions:

iAe-^/2\) - R.\h * gi],       Re[h * gi] - (Be-*M/2\)

are bounded, continuous and they have non-negative Fourier trans-

forms, which, by Theorem a, belong to Lx. Therefore the inversion

formula holds everywhere:

A<rxM . .      1   i"° A - Reluit)
—-— - Relfi * *ij = — ,.  ,  ..-*"** dt   everywhere

2X 27T J _oo tl + \*
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Si-xixi       1   p« Rety(t) - BBr*\*\      1   r°° RJ}
e~ixt dt    everywhere.

+ X

By taking the absolute values of both members we get:

. . . .        1    r °°  A - RMl)
I (Ae~^/2\) - Re[fi*gi}\  Ú- K

2x J _«,      I2 + \2

(2-4)
= (¿/2X)-.R.|/i*fi]_0>

RjhPit) - B
■ dt

dt

R.\fi*gi]-(Be-w/2\)\  á- f
(2.5)     '     u * 2tJ-x      t2 + \2

= Re[fi*gi]*=o-(B/2\).

For x = 0, we get from (2.3):

/1 00

f(y)e-^dy.
0

Suppose ^4=0. Then (2.4) becomes:

\Re[fl*gl]\    Ú   -Re\fl*glUo

or

Fe(l/4)  f   [f(x + y)- fi-y - x) - fix - y) +/(y - *)]*-*» dy
J 0

g - (1/2)*.  I   f(y)r**dy.
J 0

The conclusion (a) follows if in the last inequality we let X—»0 + .

If B = 0, then conclusion (b) follows from (2.5) in the same way. Sup-

pose now A^O. We get from (2.4) :

Ae~^x

2X
— Re— f   [fix+y)-fi-y-x)-fix-y)+fiy-x)]e-^dy

4 J0
1 rK

Ú-Re— I   /(y)e-x"Jy
2 J 0

and the conclusion (c) follows if X—*0 + . If Bt¿0, conclusion (d) fol-

lows from (2.5) in a similar way.

Corollary. Hypothesis, f E In', f(x) = 0 for x < 0; put \¡/(t)
= Jôf(x) sin tx dx, supí l[t\p(t)]=A*, inlt l[t\p(t)]=B*, and suppose

A*, B* finite.
Conclusion. The conclusion of Theorem 2 holds if we replace A, B,

Re by A*, B*, I respectively.
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Proof. Put ^*(i) = /0°°(—¿)/(x) sin tx dx. We have 7[í^(í)]

= Re[tip*it) ] and the corollary follows if in the conclusion of Theorem

2 we replace/ by —if.

II. Definition of the class e of typically real functions [3]. A func-

tion Fiz) =2+ 2r=2 a„zn (3 = re") is said to be typically real in the

circle I z I < 1, if it is holomorphic in this circle and if Fiz) is real for

real values of z, but for no other values in \z\ <1.

It follows from the above definition that the coefficients {an} are

real. Also, one can prove, that FE C if and only if, sign 7F(z) = sign 7z.

This last relation is equivalent to: sin t ■ 7F(rei() ^0.

As we mentioned in the introduction of this paper, the class Ap is

a generalization of the class C. More precisely, we notice that Q is a

proper subclass of A0. In fact, Fiz) = [z/(l—z)]+2z2 belongs to A0

but not to C.

Also, if FEAP, we have for r<l and < = 0, sin <-7[F(z)/(l-z)"]

= 0; therefore Bpg,0.

Theorem 3. If FEA0, then:

(a) I an+i — an-i | á 2 - 4F0,

(b) |fl»|^»(l - 2Bo),

(c) 1 + a2 + • • ■ + a„_i + (a»/2) ^ B0n

where ra = 1, 2, 3, • • -, a0 = 0.

Proof. Put:

(anrn + an+irn+1   for ra ^ x < ra + 1,

f(x) =  \
\ 0 for x < 0,

ra = 0, 1, 2, • • • , 0 g ro Ú r < 1.

sin tx dx.Ht) = f "/(*)

We find:

#(i) = 2sini-7F(z)

= [r + a2r2 cos / + ia¡r3 — r) cos 2/ + (a4r4 — a&2) cos 3< + • • • ]

è 2J5o.

Multiplying both sides by 1 +cos nt and integrating from 0 to 2ir we

get the inequality:

irr[2 ± ian+i - o»_if-2)f»-1] à 2Fo-2x

or |ö„+i-a„_i| g2-450, (ra^l). Next put 5r = inf,|ty(i)]. We have
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Br^2B0. The function / satisfies the assumptions of Theorem 2,

therefore r+a2r2+ ■ ■ ■ +a„_ir"-1 + (anr"/2) ^Brn/2^B0n. The con-

clusion (c) follows if we let r —»1 —.

Note. For r0=73o = 0 we get the well-known inequalities: \a„\ ^ra,

1+Ö2+ • • • +a„-i + ian/2) 7>Q lor the functions of the class C ([2],

[3]).
An analogous theorem can be given for functions of the class Ap

(p = l).
Put s«0 = cn, s® = Yj¡ml &~U (p = 1, 2, • • ■ ). It is easy to see that if

FEAP then FPiz) = 53(T-i s!f>z" belongs to .40. Applying Theorem 3 to

FP we get:

Theorem 3*. If PEAP then

(a) | j„+i — í„_i | S 2 — 45p,

(b) | sT |¡S»(1 - 2£„) (ra £ 1, j^ = 0),

(c) 1 + sT + sT +■■■+ & + is(nP)/2)ZBpn.

Theorem 4. 7/ FG^4o and F(r)~(l — r)-1 iAera

¿ (s?'/*)~« (»-►«>).
t-i

Proof. By (c) of Theorem 3 we have: (s"'/«) — (a„/2») — 50^0.

Also

Ê [(*•"/») - («*/2») - 5o]r"~ [(1 - 5o)/(l - r)].
n=l

It follows from Hardy-Littlewood's theorem [4, p. 226]:

Ê [(¿"/A) - (a*/2A) - -Bo] ~ »(1 -So)        (»-»»)

or

(*) È [fe(1)/A) - (o*/2A)] ~ ra        (ra -» oo).
4=1

By (a) of Theorem 3 we have :

2 — 4S0 + an+i — cn_i ^ 0,

oo

E (2 - 4So + an+i - an-i)r» ~ [(2 - 4£0)/(l - r)].
n=l

Applying again Hardy-Littlewood's theorem we get:
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lim   [(a„ + an+i)/n] = 0.

We write:

an+i + a„+2     n + 1 / an+i        an+2 \ an+2+ 1 / On+i        an+t \

n    \n + 1      m + 2/ n(n + 2)

Since \an\ ^«(1-2B0) we have lim„<M[ön+2/«(« + 2)] =0. Therefore

limn,oo[(an+1+an+2)/«]=0 = limn,oo[(a„+i/«+l) + (an+s/w+2)],

1 + ia2/2) + {at/3) + ■ ■ ■ {an/n) = 0(»)        (n -» + »),

and the conclusion of the theorem follows from (*).

To generalize Theorem 4 we state the following:

Theorem b [4, Ex. 8, p. 242]. If an^0 and {^anXn)~{l—x)-a,

{a>l) then ¿J-i ak~(n"/Y(a + l)), (m->oo).

Theorem  4*.   If  F E Ap and   F{r) ~ (1 - r)~a, {a > 1)   then

E2-i (^+1V*)~(»"+p/r(a+p+i)), (»->«).

Proof. Put FP{x) = 2^»-i s£V. Notice that FPG^0, FpOO
~(1—r)-(a+i>) and use Theorems 3 and b. The proof is very similar

to the proof of Theorem 4.

The following theorem provides a summability method for 23a«>

where F{z) = 22a»2" belongs to Ap. A similar theorem is given in [2]

for the class Q.

Theorem 5. If FEAP, (p^l) and limr^i_ F(r) = F(1) exists and is

positive then:

hm ■-— [1 + s2       + • • • + i»_i    + (sn     /2)\ = F(l).
n-»       n**1

Proof. From (c) of Theorem 3* it follows that:

K =  Sn —  (Sn    /2)  ~ Bpn ^  0.

If p>l then J^T-i knrn~F(l)/(l-r)p+\ If p = l then Z»"=i ¿V"
<~(F(1) — Bp)/(1— r)2. In both cases we get the conclusion of the

theorem by applying Theorem b to the function 23n=i knrn.

Note 1. Theorem 5 still holds if FEQ [2]. But the proof of Theorem

5 does not apply if p = 0, Bp 7a 0 ; therefore the question whether or not

Theorem 5 holds in this case is open.

Note 2. Theorems similar to those given for the class Ap could be

obtained for functions F(z) =z+ 23a»z" where the {o„} are not neces-
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sarily real (a„ =an+ißn)- One has to make the necessary assumptions

on

sin t- 7(2 otnzn),       sin/-7(X)/3„z").
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