THE SHILOV BOUNDARY OF THE ALGEBRA OF MEASURES ON A GROUP¹

JOSEPH L. TAYLOR

If G is a locally compact abelian topological group and M(G) denotes the algebra of bounded regular Borel measures on G under convolution multiplication, then M(G) is a convolution measure algebra in the sense of [1]. In [1] we showed that the maximal ideal space of any such algebra \mathfrak{M} can be represented as the semigroup \hat{S} of all semicharacters on some compact abelian topological semigroup S. S is called the structure semigroup of the algebra \mathfrak{M} . If $H = \{h \in \hat{S}: |h(s)|\}$ =0 or 1 for $s \in S$, then the Gelfand transform $\hat{\mu}$ of each element μ of \mathfrak{M} attains its maximum modulus on H (cf. [1, Theorem 3.3]). Hence the closure \overline{H} of H in the Gelfand topology contains the Shilov boundary of \mathfrak{M} . In [1] we show that when $\mathfrak{M} = M(G)$ for some nondiscrete locally compact topological group G, then H is a proper subset of \hat{S} . In this paper we show that there is at least one group G for which \overline{H} is a proper subset of \hat{S} . Hence, for this group G, the Shilov boundary of M(G) is a proper subset of the maximal ideal space of M(G).

For each positive integer n let T_n be the multiplicative two point group $\{1, -1\}$ and set $G = \prod_{n=1}^{\infty} T_n$. G is a compact abelian topological group. For each n we let χ_n be the function which projects G onto its nth coordinate. Each χ_n is a character in the dual group \hat{G} of G and each $k \in \hat{G}$ is either the identity or a finite product of distinct χ_n 's.

S will denote the structure semigroup of M(G) and \hat{S} the semigroup of all continuous semicharacters on S. $\mu \rightarrow \mu_S$ is the natural imbedding of M(G) into M(S) (cf. [1, Theorem 2.3]). The Gelfand transform $\hat{\mu}$ of $\mu \in M(G)$ is described by the equation $\hat{\mu}(f) = \int f d\mu_S$ for $f \in \hat{S}$.

We are interested in a particular class of measures μ in M(G). Let $\{r_n\}_{n=1}^{\infty}$ be a sequence of numbers in [0, 1) and for each n let μ_n be the measure on T_n defined by $\mu_n(1) = 2^{-1}(1 + r_n)$ and $\mu_n(-1) = 2^{-1}(1 - r_n)$. Each μ_n is a strictly positive measure of norm one on T_n . Let μ be the measure in M(G) which is the infinite product of the μ_n . That is, if U is any neighborhood in G of the form $U = \{g \in G: \chi_n(g) \}$

Received by the editors September 28, 1964.

¹ This research was supported in part by the United States Army research office (Durham).

 $=e_n, n=1, 2, \cdots, m$, where $\{e_n\}_{n=1}^m$ is any *n*-tuple of 1's and -1's, then $\mu(U) = \prod_{n=1}^m 2^{-1}(1+e_nr_n)$. Note that if k is any character of the form $k = \prod_{i=1}^m \chi_{n_i}$, where $\chi_{n_i} \neq \chi_{n_i}$ for $i \neq j$, then

$$\int k \, d\mu = \prod_{i=1}^m \left[2^{-1} (1 + r_{n_i}) - 2^{-1} (1 - r_{n_i}) \right] = \prod_{i=1}^m r_{n_i}.$$

We denote by $\mathfrak{L}(\mu)$ the Banach space of all measures in M(G) which are absolutely continuous with respect to μ . The adjoint space of $\mathfrak{L}(\mu)$ is $L_{\infty}(\mu)$. Hence each function $f \in \hat{S}$ determines a function f' in $L_{\infty}(\mu)$, such that $\int f d\nu_S = \int f' d\nu$ for each $\nu \in \mathfrak{L}(\mu)$. The map $\nu \to \nu_S$ is an L-homomorphism of $\mathfrak{L}(\mu)$ into M(S) (cf. [1, Definition 1.3 and Theorem 2.3]) and its adjoint map is the map $f \to f'$. Thus, by Theorem 1.2 of [1], $f \to f'$ preserves pointwise multiplication and is a homomorphism of the semigroup \hat{S} . We are interested in characterizing the image of \hat{S} in $L_{\infty}(\mu)$.

LEMMA 1. Each function f' for $f \in \hat{S}$ is of the form $\lim_{m \to \infty} a \prod_{n=1}^{m} \chi_n^{e_n}$, where a is a constant with $|a| \le 1$, $e_n = 0$ or 1 for $n = 1, 2, \cdots$, and the limit is in $L_1(\mu)$ norm.

PROOF. If $g \in G$ we denote by δ_g the point measure at g. The function $f \in \hat{S}$ defines a multiplicative function k (not necessarily continuous) on G by $k(g) = \int f d(\delta_g)_S = \hat{\delta}_g(f)$. If G_0 denotes the subgroup of G consisting of all g for which $\{\chi_n(g)\}_{n=1}^{\infty}$ is eventually 1, then there exists a sequence $\{e_n\}_{n=1}^{\infty}$ of 0's and 1's, such that $k(g) = \prod_{n=1}^{\infty} \chi_n^{e_n}(g)$ for $g \in G_0$.

Now for each positive integer m set $U_m = \{g \in G : \chi_n(g) = 1 \text{ if } n \leq m\}$ and $E_m = \{g \in G : \chi_n(g) = 1 \text{ if } n > m\}$. E_m contains 2^m elements, U_m is a compact neighborhood of the identity, and $\{g U_m : g \in E_m\}$ is a pairwise disjoint cover of G. Let π_m be the characteristic function of U_m . For each m we choose a collection of numbers $\{b_{m,g}\}_{g \in E_m}$ with $|b_{m,g}| \leq 1$, which minimizes the number

$$\int \left| f'(g) - \sum_{g' \in E_m} b_{m,g'} \pi_m(gg') \right| d\mu(g).$$

We set $h_m(g) = \sum_{\sigma' \in E_m} b_{m,\sigma'} \pi_m(gg')$. The sequence $\{ \int |h_m - f'| d\mu \}_{m=1}^{\infty}$ is nonincreasing and, since the continuous simple step functions of norm ≤ 1 are dense in the unit ball of $L_1(\mu)$, it follows that this sequence converges to zero.

Fix m and for $g \in E_m$ and V a Borel set of G define $\nu_g(V) = \mu(V \cap g U_m)$, then

$$\nu_{g_1} = \|\nu_{g_2}\|^{-1} \|\nu_{g_1}\| \delta_{g_1g_2^{-1}} \cdot \nu_{g_2} \\
= \prod_{\chi_n(g_1)=-1} (1+r_n)^{-1} (1-r_n) \prod_{\chi_n(g_2)=-1} (1-r_n)^{-1} (1+r_n) \delta_{g_1g_2^{-1}} \cdot \nu_{g_2}.$$

Also, it follows from the definitions of f' and k that $f'(gg_1) = k(g_1)f'(g) = \prod_{m=1}^m \chi_n \epsilon_n(g_1) f'(g)$ a.e. $/\mu$ for each $g_1 \in E_m$. Choose $g_0 \in E_m$ such that $\|\nu_{g_0}\|^{-1} \int |f' - h_m| \, d\nu_{g_0} = \min_{g \in E_m} \|\nu_g\|^{-1} \int |f' - h_m| \, d\nu_g$ and let $a_m = b_{m,g_0} k(g_0)$ and $k_m = \prod_{m=1}^m \chi_n \epsilon_n$. Then

$$\int |f' - a_m k_m| d\mu = \sum_{g_1 \in E_m} \int |f' - a_m k_m| d\nu_{g_1}
= \sum_{g_1 \in E_m} ||\nu_{g_0}||^{-1} ||\nu_{g_1}|| \int |f' - a_m k_m| d(\delta_{g_1 g_0}^{-1} \cdot \nu_{g_0})
= \sum_{g_1 \in E_m} ||\nu_{g_0}||^{-1} ||\nu_{g_1}|| \int |f'(g_1 g_0^{-1} g) - a_m k_m(g_1 g_0^{-1} g)| d\nu_{g_0}(g)
= \sum_{g_1 \in E_m} ||\nu_{g_0}||^{-1} ||\nu_{g_1}|| \int |k_m(g_1 g_0^{-1})(f'(g) - a_m k_m(g))| d\nu_{g_0}(g)
= \sum_{g_1 \in E_m} ||\nu_{g_0}||^{-1} ||\nu_{g_1}|| \int |f' - h_m| d\nu_{g_0}
\leq \sum_{g_1 \in E_m} \int |f' - h_m| d\nu_{g_1} = \int |f' - h_m| d\mu.$$

That is, $\int |f' - a_m k_m| d\mu \le \int |f' - h_m| d\mu$. Hence

$$\left\{a_m k_m\right\}_{m=1}^{\infty} = \left\{a_m \prod_{n=1}^m \chi_n^{e_n}\right\}_{m=1}^{\infty}$$

converges in $L_1(\mu)$ norm to f'. If a is a cluster point of the sequence $\{a_m\}_m$, then $\{a\prod_{n=1}^m\chi_n^{e_n}\}_{m=1}^\infty$, also converges to f' in $L_1(\mu)$ norm. This completes the proof.

LEMMA 2. If $\limsup_{n \to \infty} r_n < 1$ and $f' = a \lim_{m \to \infty} \prod_{n=1}^m \chi_n^{e_n}$ as in Lemma 1, with |a| > 0, then there exists M, such that $e_n = 0$ if n > M. Hence f' = ak where $k = \prod_{n=1}^M \chi_n^{e_n} \in \hat{G}$.

Proof.

$$\int \left| \prod_{n=1}^{m-1} \chi_n^{e_n} - \prod_{n=1}^m \chi_n^{e_n} \right| d\mu = \int \left| 1 - \chi_m^{e_m} \right| d\mu = e_m (1 - r_m).$$

Hence if $\left\{\prod_{n=1}^{M} \chi_n^{e_n}\right\}_{m=1}^{\infty}$ converges in $L_1(\mu)$ norm, then either $\limsup_n r_n = 1$ or $\left\{e_n\right\}_{n=1}^{\infty}$ is eventually zero.

For each positive integer n let A_n be the subset of [0, 1] consisting of 1 and all finite products $\prod_{i=1}^m r_{n_i}$ with $n < n_i$ for $i = 1, 2, \dots, m$ and $n_i \neq n_j$ if $i \neq j$.

LEMMA 3. If $\limsup_{n} r_n < 1$, then the closure of \hat{G} in the weak-* topology of $L_{\infty}(\mu)$ is $\{ak: k \in \hat{G} \text{ and } a \in \bigcap_{n} \overline{A}_{n} \}$.

PROOF. If $a \in \bigcap_n \overline{A}_n$ then there is a sequence $\left\{ \left\{ p_{i,n} \right\}_{i=1}^{m_n} \right\}_{n=1}^{\infty}$ of tuples of distinct integers, with $p_{i,n} \ge n$, such that $\lim_n \prod_{i=1}^{m_n} r_{p_{i,n}} = a$. If $k \in \widehat{G}$ then k is a product of χ_p 's with $p \le M$ for some integer M; set $h_n = k \prod_{i=1}^{m_n} \chi_{p_{i,n}} \in \widehat{G}$. If U is any open-compact rectangle in G of the form $U = \left\{ g \in G : \chi_{q_j}(g) = \sigma_j \right\}$ for $j = 1, 2, \cdots, u$ where $\left\{ \sigma_j \right\}_{j=1}^{u}$ is any u-tuple of 1's and -1's, then $\int_U h_n \, d\mu = \prod_{i=1}^{m_n} r_{p_{i,n}} \int_U k \, d\mu$ provided $n > q_j$ for $j = 1, 2, \cdots, u$, and n > M. Hence $\lim_n \int_U h_n \, d\mu = \int_U ak \, d\mu$. From this fact and the fact that $\left\{ h_n \right\}_{n=1}^{\infty}$ is uniformly bounded it follows that $\lim_n h_n = ak$ in the weak-* topology of $L_{\infty}(\mu)$.

Conversely, suppose h is in the weak-* closure of \hat{G} in $L_{\infty}(\mu)$. Then h=f' for some $f\in \hat{S}$ and hence, by Lemma 2, h=ak for some a with $|a|\leq 1$ and $k\in \hat{G}$. Let $\{k_{\alpha}\}$ be a net in \hat{G} converging weak-* to ak. Then $\lim_{\alpha}kk_{\alpha}=a$. If a is not 1 then we may assume that $kk_{\alpha}=\prod_{i=1}^{m_{\alpha}}\chi_{n_{i,\alpha}}$, where $n_{i,\alpha}\neq n_{j,\alpha}$ if $i\neq j$. Then $\lim_{\alpha}\int kk_{\alpha}d\mu=\lim\prod_{i=1}^{m_{\alpha}}r_{n_{i,\alpha}}=a$. Also, since the weak-* limit of $\{kk_{\alpha}\}$ is a constant, it follows that, given n, eventually $n_{i,\alpha}\geq n$ for $i=1,2,\cdots,m_{\alpha}$. Hence $a\in \bigcap_{m}\overline{A}_{m}$. This completes the proof.

THEOREM 1. If $\limsup_{n} r_n < 1$, $k \in \hat{G}$, and 0 < |a| < 1, then ak = f' for some f in the Shilov boundary of M(G) if and only if $|a| \in \bigcap_{n} \overline{A}_{n}$.

PROOF. If $|a| \in \bigcap_n \overline{A}_n$ then, by Lemma 3, |a| is in the weak-* closure in $L_{\infty}(\mu)$ of \widehat{G} . It follows that there exists h in the closure of \widehat{G} in \widehat{S} such that h' = |a|, that is, h is identically |a| on the carrier of μ_S in S. Then h is identically $|a|^n$ on the carrier of μ_S^n in S for each n. Since 0 < |a| < 1 it follows that carrier $(\mu_S^n) \cap \text{carrier} (\mu_S^m) = \emptyset$ for $n \neq m$. Let $\nu(V) = \int_V |a|^{-1} \bar{a} \bar{k} d\mu$ for each Borel set V of G. Then carrier $(\nu_S^n) \cap \text{carrier} (\nu_S^m) = \emptyset$ for $n \neq m$, and hence

$$\|(\nu + \delta_e)^n\| = \left\| \sum_{m=0}^n \binom{n}{m} \nu^m \right\| = \sum_{m=0}^n \binom{n}{m} \|\nu^m\| = \sum_{m=0}^n \binom{n}{m} = 2^n,$$

where e is the identity of G and δ_e is the point measure at e. Thus $\nu + \delta_e$ has spectral radius 2 and it follows that there exists h_1 in the Shilov boundary of M(G), such that $|(\hat{\nu} + \hat{\delta}_e)(h_1)| = |\hat{\nu}(h_1) + 1| = 2$. Since $||\nu|| = 1$, $\hat{\nu}(h_1)$ must be 1. Then $\int |a|^{-1}\bar{a}\bar{k}h_1'd\mu = 1$ and we conclude that $h_1' = |a|^{-1}ak$ and $(hh_1)' = ak$. Now the Shilov boundary is clearly invariant under multiplication by elements of \hat{G} and, since the

Shilov boundary is closed, it is invariant under multiplication by elements of the closure of \hat{G} in \hat{S} . Hence hh_1 is in the Shilov boundary.

Conversely, suppose ak = f' where f is in the Shilov boundary. By Theorem 3.3 of [1], f is the limit of a net $\{h_{\alpha}\}\subset H=\{h\in \hat{S}: |h(s)|=0\}$ or 1 for $s \in S$. By Lemmas 1 and 2, there exist numbers a_{α} , $|a_{\alpha}| = 0$ or 1, and characters k_{α} , such that $h'_{\alpha} = a_{\alpha}k_{\alpha}$ for each α . Clearly, $\lim_{\alpha} a_{\alpha} = a/|a|$ and $\lim_{\alpha} k_{\alpha} = |a|k$ in the weak-* topology of $L_{\infty}(\mu)$. Hence, by Lemma 3, $|a| \in \bigcap_n \overline{A}_n$.

THEOREM 2. The Shilov boundary of M(G) is a proper subset of \hat{S} .

PROOF. If $\{r_n\}_{n=1}$ is chosen such that $0 < \limsup_n r_n < 1$, then there is a positive number $a \in \bigcap_n \overline{A}_n$. Then $a = f'_a$ for some $f_a \in \widehat{S}$, by Theorem 1, where f_a may be chosen such that $f_a(s) \ge 0$ for each $s \in S$. Hence, $f_a^z \in \hat{S}$ for each complex number z with Re z > 0, and $f_a^{z'} = a^z$. It follows that for each b in the unit disc there exists $f_b \in \hat{S}$, such that $f_b' = b$. By Theorem 1, f_b may be chosen from the Shilov boundary if and only if $|b| \in \cap \overline{A}_n$. However $\cap_n \overline{A}_n \subset [0, \lim \sup_n r_n] \cup 1$ which is a proper subset of [0, 1]. This completes the proof.

References

1. J. L. Taylor, The structure of convolution measure algebras, Trans. Amer. Math. Soc. 119 (1965), 150-166.

HARVARD UNIVERSITY