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If G is a locally compact abelian topological group and MiG) de-

notes the algebra of bounded regular Borel measures on G under con-

volution multiplication, then MiG) is a convolution measure algebra

in the sense of [l]. In [l] we showed that the maximal ideal space of

any such algebra 9JÎ can be represented as the semigroup 5 ol all

semicharacters on some compact abelian topological semigroup 5. 5 is

called the structure semigroup of the algebra 9JÍ. If H= {hES: \ his) \

= 0 or 1 for s£5}, then the Gelfand transform p oí each element p

of SfJJ attains its maximum modulus on H (cf. [l, Theorem 3.3]).

Hence the closure H oí H in the Gelfand topology contains the

Shilov boundary of ffl. In [l] we show that when 9Ji = M(G) for

some nondiscrete locally compact topological group G, then if is a

proper subset of 5. In this paper we show that there is at least one

group G for which H is a proper subset of 5. Hence, for this group G,

the Shilov boundary of M (G) is a proper subset of the maximal ideal

space of MiG).

For each positive integer n let F„ be the multiplicative two point

group {l, — l} and set G=U"_1 ^»- G is a compact abelian topo-

logical group. For each n we let x» be the function which projects G

onto its nth coordinate. Each x» is a character in the dual group G of

G and each kEG is either the identity or a finite product of distinct

Xn's.

5 will denote the structure semigroup of MiG) and S the semigroup

of all continuous semicharacters on 5. p-^>ps is the natural imbedding

of MiG) into MiS) (cf. [l, Theorem 2.3]). The Gelfand transform p

of pEMiG) is described by the equation £(/) =ffdps for/£5\
We are interested in a particular class of measures p in MiG). Let

{r„}"=1 be a sequence of numbers in [0, 1) and for each n let pr, be

the measure on T„ defined by Mn(l) = 2_1(1 + rn) and p„i — l)

= 2_1(1— rn). Each p^ is a strictly positive measure of norm one on

F„. Let p be the measure in MiG) which is the infinite product of the

p„. That is, if i/isany neighborhood in G of the form U={gEG\Xnig)
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= en, n = l, 2, ■ • • ,m}, where {en}r=.i is any »-tuple of l'sand — l's,

then ß(U) = IIn=i 2-1(l-r-iV„). Note that if k is any character of the

form k= YLT-i Xni, where x»,^X»j for iVj, then

/
kdß = TJ [2-x(l + rni) - 2-H1 - rni)] = JJ rn,.

¿=i

We denote by 2(ß) the Banach space of all measures in M(G)

which are absolutely continuous with respect to ß. The adjoint space

of 2(ß) is Lx(ß). Hence each function fES determines a function/' in

Lœ(u), such that ffdvs=ff'dv for each vE%(u)- The map v^>vs is an

L-homomorphism of 2(ß) into M(S) (cf. [l, Definition 1.3 and Theo-

rem 2.3]) and its adjoint map is the map/—»/'. Thus, by Theorem 1.2

of [l],/—>/' preserves pointwise multiplication and is a homomor-

phism of the semigroup S. We are interested in characterizing the

image of S in Lx(ß).

Lemma 1. Each function f for fES is of the form limm a Yln-i Xn6",

where a is a constant with \a\ ¿1, en = 0 or 1 for n = l, 2, - ■ ■ , and

the limit is in Li(ß) norm.

Proof. If g G G we denote by hg the point measure at g. The func-

tion fES defines a multiplicative function k (not necessarily con-

tinuous) on G by k(g) =//d(ôg)s = og(f). If G0 denotes the subgroup

of G consisting of all g for which \Xn(g) }iT=i1S eventually 1, then there

exists a sequence {enj^-i OI 0's an<3 l's, such that k(g) = U"=i Xn*"(g)

for gGGV
Now for each positive integer m set Um= {gEG: x«(g) = 1 if

n^m} and Em= {gEG: Xn(g) = 1 il n>m}. Em contains 2m elements,

Um is a compact neighborhood of the identity, and {gUm: gEEm} is

a pairwise disjoint cover of G. Let irm be the characteristic function

of Um. For each m we choose a collection of numbers {bm,g}0eEm with

| bm,a\ Ú 1, which minimizes the number

/
f(g) -   Z   bm,„'Tm(gg')

t'eEm

dß(g).

We set hm(g)= Ylg'GEmbm,g'irm(gg'). The sequence {J\hm-f'\dß}^i

is nonincreasing and, since the continuous simple step functions of

norm ^1 are dense in the unit ball of Li(jx), it follows that this se-

quence converges to zero.

Fix m and for gEEm and Fa Borel set of G define vg( V) = ju( VT\g Um),

then
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"«i = I Wl IkJKior1 •"»»
=     II     (1 + rn)-\l - rn)     II     (1 - rn)~Ki + rn)og -¡■■Va"SIB,       "Bf

Xn(il)=-1 In(«2)=-I

Also, it follows from the definitions of/' and k that/'(ggi) = ^(gi)/'(g)

= LTn-i Xnen(gi)/'(g) a.e./p. for each giGEm. Choose goEEm such that

Ikolh1/!/' - hm\dvBl> = minfl6Bm IkH-1/!/' - hm\dv„ and let am
= bm,<,Mgo) and fem= II»-i X»'n- Then

/| /' - amkm \dp =   22    I   I /' - °mk» I dvQi
Ol£Em J

=      E     IWMklll    I     I/'  -  amkm\  ¿(«„„."'•O
eie£„ ^

=      E     IWMklll    I     l/'felÄÖ"^)   -   Öm^m(glg0_1g) I  dvK(g)
meBm J

= E Iklhlkll f I kmigigo-i)if'ig) - amkmig)) I ¿F„(g)

=  E IklliWI f I/'-*»'*m I ¿Cío

OieEm

^ E   f ly-fcil*««-f |y-*-|*».

That is, /|/'— amkm\dp^f\f — hm\dp. Hence

¡<Im^(m-l  =   <amH Xn f
\        n=l J   m=l

converges in Liip) norm to /'. If a is a cluster point of the sequence

{am}m, then {öJJ™_, x»en}m=i> also converges to/' in Liip) norm.

This completes the proof.

Lemma 2. If lim supnr„<l andf =a limm XI™=1 X«*"as in Lemma 1,

with \a\ >0, then there exists M, such that e„ = 0 if n>M. Hence

f' = ak where k*= JJ* i Xne"EG.

Proof.

/| m—l m /%

II X°" -Jlxl" dp=   11 1 - xm \dp = e»,(l - r„).
I n=l n=l J

Hence if   {Yl„-i X^lm-i  converges  in  Li(ju)   norm,  then  either

lim sup„ rn = l or {en}n-i is eventually zero.
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For each positive integer n let An be the subset of [0, l] consisting

of 1 and all finite products Y\?-i rnj with n<n{ for i = l, 2, • • • , m

and UiT^nj if i^j.

Lemma 3. If lim sup„ r„ < 1, then the closure of G in the weak-* topol-

ogy of Lx(ß) is {ak: kEG and aEf]n An}.

Proof. If aEOn An then there is a sequence { {pi.n^^n-i of

tuples of distinct integers, with pi¡n = n, such thatlimn Ijjíi fPi,n=a.

If kEG then k is a product of Xp's with p^M lor some integer M;

set hn = kY\^1 XpiinG£r. If U is any open-compact rectangle in G

of the form U= {gEG: x5,(g) =0j} for j = l, 2, • • • , m where

{er,-} "=i is any w-tuple of 1 's and — 1 's, then fuhn dß = Ijjïi rPi,Juk dß

provided n>q¡ for/ = l, 2, ■ ■ • , u, and n>M. Hence lim„ fvhn dß

= fvakdß. From this fact and the fact that {hn}ñ-i is uniformly

bounded it follows that lim„ h„=ak in the weak-* topology of Lx(ß).

Conversely, suppose h is in the weak-* closure of G in Lx(ß). Then

h=f for some fES and hence, by Lemma 2, h=ak lor some a with

|a| gl and kEG. Let {ka} be a net in G converging weak-* to ak.

Then lima kka = a. If a is not 1 then we may assume that kka

= ITr=i Xni,„i where »,-,„ 9e n,,a if i t^ j. Then lim Jkka dß

= lim Y\7=i rni,a=a. Also, since the weak-* limit of {kka} is a con-

stant, it follows that, given n, eventually ra;,a2:« for i = l, 2, ■ ■ ■ ,m„.

Hence a£D„, Am. This completes the proof.

Theorem 1. 7/limsup„ rn<l, kEG,and 0< |a| <1, then ak=f for

some f in the Skilov boundary of M(G) if and only if \a\ Ef\n An.

Proof. If |a|Grif>^n then, by Lemma 3, |a| is in the weak-*

closure in Lx(ß) of G. It follows that there exists h in the closure of

G in S such that h' = \a\, that is, h is identically \a\ on the carrier

of ßS in S. Then h is identically | a | " on the carrier of u's in 5 for

each n. Since 0< |a| <1 it follows that carrier (uj)/^carrier (p.™) = 0

lor n^m. Let v(V) =fv\a\-lâk dß for each Borel set F of G. Then

carrier (^)ncarrier (vs)=0 for n^m, and hence

uv+oeY\\=\t(ny =t(M)iHi=t(M)-2«,
II m=o \m I m=o \m / m=,o \m /

where e is the identity of G and 5e is the point measure at e. Thus

v + he has spectral radius 2 and it follows that there exists hi in the

Shilov boundary of M(G), such that | (v + îe)(h)\ =|j>(Ai) + l| =2.

Since 11^11 = 1, v(hi) must be 1. Then J\a\~1äkh'1 dß—1 and we conclude
that h'i = | a | ~lak and (hhi)' =ak. Now the Shilov boundary is clearly

invariant under multiplication by elements of G and, since the



1965I   SHILOV BOUNDARY OF THE ALGEBRA OF MEASURES ON A GROUP    945

Shilov boundary is closed, it is invariant under multiplication by ele-

ments of the closure of G in S. Hence hhi is in the Shilov boundary.

Conversely, suppose ak—f where/ is in the Shilov boundary. By

Theorem 3.3 of [l],/is the limit of anet {ha} EH= {hE$: \his)\ =0

or 1 for s£5}. By Lemmas 1 and 2, there exist numbers aa, \aa\ =0

or 1, and characters ka, such that h'a = aaka for each a. Clearly,

lim0aa = a/|a| and lima£a=|a|& in the weak-* topology of Lxip).

Hence, by Lemma 3, |a| Efin An.

Theorem 2. The Shilov boundary of M(G) is a proper subset of S.

Proof. If {r„}n_i is chosen such that 0<lim sup„ rn<l, then there

is a positive number aGfin An. Thena=/„' for some/0£5, by Theorem

1, where /„ may be chosen such that/a(s) 2:0 for each sES. Hence,

faES for each complex number z with Rez>0, and/"=az. It fol-

lows that for each b in the unit disc there exists fb E 5, such that

fi = b. By Theorem 1, /¡, may be chosen from the Shilov boundary if

and only if |¿>| E[\An. However ("In AnE[0, lim sup„ r„]Wl which is

a proper subset of [O, 1]. This completes the proof.
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