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The only umbilical surfaces of Euclidean space are planes and

spheres. We propose to study umbilical hypersurfaces in Riemannian

space with the added condition that they constitute a system of

parallels. As will be shown, such families only exist in spaces of con-

stant curvature.

We will adhere throughout to the spirit of Weatherburn's notation

[3]. Greek indices take the values 1, 2, • • • , m = n-\-\; the range of

Latin indices is 1, ■ • • , «.

Consider the equations y" = ya(x1, x2, ■ ■ ■ , xn, s). For each value

of s we have a hypersurface and if the x's are fixed, the equations

represent a trajectory of the family of hypersurfaces. Since we want

a system of parallels [3, pp. 80-82], the trajectories used are geodesies

orthogonal to the hypersurfaces. Making 5 the arc length d,ya = Na

is the unit normal and for the intrinsic derivative of yaif we find

(1) D.y.i = N«;i,

where Na-i is the tensor derivative of Na [3, p. 135]. Also, DsNa = 0.

If we eliminate the x's and solve for 5 we get the representation

U(y1, y2, • • • , ym)=s for the family of hypersurfaces. Because of

U,aNa= 1, U,a = Na. Moreover, the hypersurfaces are required to be

totally umbilical which means Q,y= — Lg,y [3, p. 139] and this in turn

leads to [3, p. 136]

(2) N«.,i = Lr.i.

Theorem. If through every point in all directions there exist hyper-

surfaces belonging to a system of parallel umbilical hypersurfaces, then

the space has constant Riemannian curvature K, Lti = 0, — dsL = L2+K,

and conversely.

If we take U = s as the equation of the family of hypersurfaces N

may be regarded as a function of the y's and we write (2) in the form

(Na,ß—Laaß)yß,i = Q. Furthermore, Na,ß= U,aß = Nß,a. We now think

of Na,ß—Laa$ expressed in terms of N and an orthogonal ennuple

[l, pp. 96-97] consisting of vectors perpendicular to N. The tensor in

question is seen to be NaNß times a scalar factor. Multiplication by

Na shows that
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(3) Na,ß = L(aaS - NaNß).

Conversely, (2) follows from (3) and (3) also implies that N is a

gradient [3, p. 60 ] and this latter fact tells us that we are dealing

with a system of parallels [3, p. 82]. In other words (3) is character-

istic for parallel umbilical hypersurfaces.

The system of equations (3) has been shown to be completely

integrable [2] if the Riemannian curvature K is constant and — L,a

= (L2+K)Na. These conditions were also proven necessary for the

existence of solutions of (3) at all points in arbitrary directions.

Clearly, the equations for L are equivalent to L,¿ = 0 and — dsL

= L?+K.
We note that L is constant on a hypersurface and for an individual

hypersurface we have the constant curvature [l, p. 185]

K(s) = L2 + K.

Theorem. //, in a space of constant K, one hypersurface in a family

of parallels is umbilical, all are.

For the proof we use an identity which can be derived directly

taking into account the definition of the curvature tensor [3, p. 110]

and DsNa = 0, namely DsNa.i = RaßUN^N^y^,i. It follows that in our

case DeNa-ti= —Ky",i. We assume that Naii = Loya,i for the hyper-

surface s = 0. Let L be the solution of the differential equation

— dsL=L2-\-K which takes the value L0 when s = 0. For a fixed i we

set wa = Na;i—Lya,i and conclude with the aid of (1) that w" satisfies

the differential equation Dswa= —Lw". Now as 5 = 0, wa = 0 and so

w" = 0 are the unique solutions of the differential equations which

proves our theorem.

In spaces of constant curvature then, any umbilical hypersurface

gives rise to a family of parallel umbilical hypersurfaces. For con-

venience we use the latter concept to investigate the totality of um-

bilical hypersurfaces. We restrict our discussion to hyperbolic space

which offers the greatest variety. Returning to the differential equa-

tion —dsL = L2+K~, we observe that its solutions naturally fall into

three categories.

(I) L2+A<0. Denoting the square root of —K by k, we get solu-

tions containing an arbitrary constant C in the form L — k tanh k(s — C).

Hence for s = C, L = 0 which corresponds to a hyperplane [3, p. 139]

and other values of s belong to equidistant hypersurfaces.

(II) L2 + K > 0. Here L = k coth k(s - C). If, by definition,
za = ya,i csch k(s — C) it is found that Dsza = 0. Thus za has constant

magnitude and that of ya%i involves the factor sinh k(s — C). We infer
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that for s = C, y" = const, L being undefined. Hence in case (II) we are

dealing with hyperspheres.

(Ill) L2+K = 0. In this case it has been demonstrated [2] that

the vectors N and hence the geodesic trajectories are all parallel.

Consequently the family consists of limiting hypersurfaces or hyper-

horospheres. They all have curvature zero.

Elliptic space admits of case (II) only, but the hyperspheres are

geometrically the same as equidistant hypersurfaces.
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THE RING C(X)  DETERMINES THE CATEGORY OF X

W. W. COMFORT AND STELIOS NEGREPONTIS1

Summary and introduction. Our point of departure is the assertion

(justified in Lemma 1.2) that certain topological properties of an

arbitrary space Y are inherited by each subset of Y which meets

each nonempty G¡ subset of Y. We consider specifically only the

properties "is of second category" and "is a Baire space," but other

properties in the same vein will occur readily to the reader. Specializ-

ing quickly to completely regular Hausdorff spaces, we recall that X

is Ga-dense (in the sense just described) in its Hewitt completion

( = "realcompactification") vX, so that X possesses each of the prop-

erties in question if and only if vX does. This means that algebraic

properties of the ring C(X) of real-valued continuous functions on

X determine, for example, the category of X. (We make no claim

that the conditions on C(X) which determine whether or not X is

of second category are aesthetically pleasing or elegantly presented.

For the record we give such criteria in 2.5, but the merit of that sec-

tion rests in its existence, not in its content.)

Since Gj-density is preserved by arbitrary products (in a sense
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