
PAIRS OF CARLEMAN-TYPE INTEGRAL EQUATIONS

r. c. mac camy1

It is known that the singular equation

(1)        fix) = — f+1fit)ix - t)-Ht + gix), | x | < 1,
IT      J -l

has a solution for all Holder continuous a and g. The integral is the

Cauchy principal value. An explicit solution was obtained by Carle-

man [l]. This note concerns systems of equations of the same type.

/ and g are then vectors and a is a matrix. We can illustrate the ideas

by confining ourselves to two equations and to the case of a constant

matrix a. Moreover we assume that g(x) is analytic for x in a region

R containing the line segment lmx = 0, — 1 s=x:£ +1.

Let H denote the class of vector-valued functions /=(/i, fi) such

that the f, are Holder continuous on — Kx < +1 and satisfy,

fiix) = 0((1 + x)-1+e) as x -+ ± 1

for some e>0.

Theorem, (i) I/det(I—ia) p^0 equations (1) possess a solution f EH.

(ii) Ifdet(i— ia) = 0 equations (1) possess no solution unless f=g = Q.

The existence of a solution in case (i) is a very special case of the

general theory of singular integral equations, see for example [2] and

[3]. The explicit formula for the solution (equations (9) and (10)) and

part (ii) of the theorem appear to be new.

If the matrix a can be diagonalized (1) can be reduced to a system

of independent equations but we proceed directly using a vector form

of Carleman's method. SupposefEHisa (vector) solution of (1). Let

z = x+iy and set

Fiz) = (2*t)_1 ffit)it - z)-1 dt

(all integrals are to be understood as from — 1 to +1). F(z) is analytic

on the plane slit along y = 0, |x| <1. It has limits F+ and F~ as

y—>0 from y>0 and y<0 but these are not the same. The Plemlj

formulas yield,
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F*-F--f{x),

(2) F+ + F-= -(ttî)-1 Jf(t)(x - 0"1 dt,

y = 0,     |x| < 1.

Thus (1) can be rewritten as,

(3) (I + ia)F+ = (I - ia)F~ + g   on y = 0,     | x | < 1.

F(z) also satisfies the conditions,

F(z) = 0(z~1) as z -* oo,

(4)
F(a) = 0(0 + l)-1+<)        (ii-»±l.

Equations (3) and (4) constitute what is called a Hilbert problem [2].

Case (1). det(/-ia)^0.

Equation (3) can be written as

(5) BF+ = F' + G,    z = x,     | x | < 1

where,

(6) B = (I - ia)~l(I + ia),       G = (I - ia)~lg.

We introduce the matrices

Í = (2«)-1 log B,       0 = [(* - l)/(s + 1)]*.

These matrices can be defined in terms of the eigenvalues of B and 4>.

B is the Cayley transform of a hence its eigenvalues Xi and X2 have

the form exp(¿0i,2), Ogöi, 02<2tt. If 6i¿¿62 we set

* = [(Ö1A2 - «»Xi)/ + (02 - 0O5]/2t(X, - Xi)

while if 0i = 02

* = [(0i + i)I - &ï1B]/2tt.

The eigenvalues ti and t2 of ip are (27r)-10i and (2tt)_i02. We define <£

as

<t> = [(t2P" - Tip«)/ + (pt - prl)^]/(r2 - n) if 6»! ?¿ 02,

= (pT> - tiP" log p)I + p« log p if 02 = 0i,

where p = (z — l)/(z+l). Note that the eigenvalues of <j> are pT1 and

pT2. $ is then a matrix, analytic and nonsingular on the slit plane. It

can be verified by the Cayley-Hamilton theorem that

<p-B = <t>+.

We set
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x = 4>F,   p = <jrG.

Then if (5) is multiplied by <p~~ the resulting equation is,

(7) X+ = X~ + M on z = x, | x | < 1.

The conditions (4) imply (ti,2>0),

y(z) -> 0 as z -» oo

(8) W
x(z) = oiiz - l)-1) as a -* 1,       *(*) = o((z + I)"2) as s -» -1.

The most general function satisfying (7) and (8) is,

(9) x(z) = (2«)-1 f M(0(< - z)"1 * + c(* + 1)_1

where c is a constant. / is then determined from (2) as,

(10) /(*) = (F+ - F-) = [(<í,-1)+x+ - i*"1)"*-].

We can prove that (9) and (10) yield a solution of (1) for any choice

of the constant c. We treat the case 819^8%. Define/by (10) and form

Fiz) as above. Note that (^±)_1 = (<p_1)± so that by (2) and (10) the

function

F(z) = (^-1x)

is single-valued and vanishes at infinity. It is known that if pit) has

algebraic singularities at t = ± 1 the Cauchy integral in (9) possesses

singularities of the same orders atz= ±1. Observe also that <p~l has

the form

Ap~T1 + Bp~Ti

where A and B are constant matrices. From these facts one can show

that fEH and that F(z) — (<^)_1x) cannot have poles at z= + 1. Hence

Fiz) = (*-1x).

Then we can retrace our steps and establish (3) which is equivalent

to (1). This completes the proof for Case (1). The lack of uniqueness

is also present for the single equation (see [l]).

Case (2). det(7-ia)=0.

Consider (3) as a system of equations for the components Ff and

Ft. In order to have a solution the right side must be orthogonal to

solutions v of

(/ - iaT)v = 0.

That is,
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((/ - ia)F~ + g)-v = F--(I + iaT)v + g-v = (2(F--*) + g-v) = 0.

Recall that g(z) is analytic in a neighborhood of the slit y = 0, | x| < 1.

Thus 2F-v+g-v is analytic in the slit plane and continuous on y = 0,

|x| <1 when defined by its limit value from y<0. These limit values

are 0 hence 2F-v+g-v can be continued across y = 0, |x| <1 as an

analytic function and must then be identically zero. In particular

(11) 2F+-v + g-v = 0       ony = 0,     | x\ < 1.

Now consider (3) as a system of equations for F~. We find in the

same way that,

2F+-T - g-r = 0

where r is a solution of

(/ + iaT)r = 0

that is, for t= v. Thus

(12) 2F+-V - g-V = 0.

Observe that neither di2 nor a2i can be 0. Hence we can take v in the

form (b, 1) with Imb^O. Then (11) and (12) yield,

2(bF+i+F+2)= -bgi- g2,

2(bF+i + F¡) = + bgi + gi.

Subtracting we see that Ff equals a linear combination of the single-

valued functions gi and g2. F2+ will then equal a similar combination

and thus Fi and F2 are actually single-valued. Therefore by (2) /

will be identically zero.

Our result has application to a boundary-value problem for har-

monic functions. Suppose we seek functions ul and u2 harmonic in

y>0, continuous in y^O, becoming at most logarithmically infinite

at infinity and satisfying the conditions,

uv(x, 0)

uy(x, 0)

If a solution exists it can be represented in the form

m¿(x, y) = (2a-)-1 ff(t) log [(* - t)2 + y2] dt.

= 0    on | x \ > 1,

2

= E aijUz(x, 0) + g*'(x), | x\ < 1.
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Then the conditions on |x| <1 require that/1,2 should be a solution

of (1). If detil — ia) p^O we can find a solution while if det(7 — ia) =0

there exists no solution.
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A REMARK ON AN ARITHMETIC THEOREM
OF CHEVALLEY

H. BASS

1. Let A be an algebraic number field with ring of integers 0, and

let £ be a finitely generated subgroup of the multiplicative group, A*.

All but finitely many primes p are "prime to E," i.e., the units of

Op contain E. An ideal a is called "prime to E" if its prime divisors

are. In this case we have a natural homomorphism

E -^ (0/a)*

whose kernel, the congruence subgroup {a£E|a = l mod a}, is

evidently of finite index. We denote the group of all (complex) roots

of unity by Q/Z.

Theorem. Let x'- E^Q/Z be a character of E. Then there are in-

finitely many prime ideals p of k, prime to E, such that x factors through

a character of (0/p)*, i.e., such that ker (£—>(0/p)*) Cker x-

It follows immediately that if U is a subgroup of finite index in E

then ker(F—>(©/a)*) C U for a suitable a, which we may take to be

square free. This is the form of the theorem proved by Chevalley in

[2]. That a may be taken square free is implicit in his proof. The

following corollary paraphrases Chevalley's theorem.

Corollary 1 (Chevalley). If we embed E in JJP prime to e (©/p)*,
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