
ON THE CONTINUOUS FUNCTION SPACE OF A
BASICALLY DISCONNECTED SPACE1

DWIGHT B. GOODNER

Throughout this note we shall let H be a Hausdorff space and let

CiH) be the space of bounded continuous real-valued functions on

H, CiH) having the usual supremum norm. Certain results (cf. e.g.

[7]) suggest the possibility of showing that if a normed linear space

X is complemented in every superspace (cf. [l, pp. 94 and 120]),

then X is isomorphic to some space CiH) over a Stone space H, and

that if X is isometric to some CiH), then ilis basically disconnected.

The purpose of this note is to extend a result of Dean [2, p. 391] for

CiH) where H is extremally disconnected and compact to the case

where H is basically disconnected and normal. Our proof rests on

an extension of James' technique [6, p. 900] for embedding the space

im) of bounded sequences in CiH) where H is infinite, extremally dis-

connected and compact.

Let r be a real number. We shall say that H is basically discon-

nected if and only if the closure of every open set of the form

G(J, r) = {h-.fih) <r,hEH,fE CiH)}

is open. We note that an extremally disconnected space is basically

disconnected, that a basically disconnected space is totally discon-

nected, and that in a normal space an open set is an F„ set if and only

if it is a set of the form Gif, r) (cf. [3, p. 15]).

Our first lemma contains a result of Dean [2, p. 391].

Lemma 1. If H is an infinite basically disconnected normal Hausdorff

space, if W is an infinite open and closed subset of H, and if h' is a

point in W, then W— {h' } contains an infinite open and closed set.

Proof. Suppose W— N is finite whenever N C W is a neighborhood

of h'. Then each point h^h' in W is open. Hence each countably

infinite subset H' of W— {h1} is an open F„ set and its closure

H' = H'\J{h'} is open. It follows that if H' and H" are countably

infinite subsets of W- {h'}, then HT\H"Z){h'} j¿0 even though

H' and H" may be disjoint. But this is impossible because in a bas-

ically disconnected normal Hausdorff space, disjoint open F, sets
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have disjoint closures. Hence there is a neighborhood N' of h' such that

N'EWand IF-A7'is infinite. UfEC(H) takes the value 0 on W-N',

lath', and 1 on H— W, the closure of {h : f(h) < §} is an infinite open

and closed subset of W— {h'}.

Lemma 2. If H is an infinite basically disconnected normal Haus-

dorff space, then H contains an infinite sequence { V,} of pairwise dis-

joint, nonempty, open and closed sets. If V is the closure of 11,1 ¡ V,-,

then V is open and closed.

Proof. We will construct the sequence inductively. Let hi be a

point in H. By Lemma 1 there is an infinite open and closed subset

NiEH- {h}. Let Vi = H-Ny We note that hE Vi and Fx is open
and closed. Suppose we have chosen pairwise disjoint open and closed

sets Vy V2, ■ ■ • , Vk so that hiE F¿and Nk — H— UjLj F<isan infinite

open and closed subset of H. Let hk+i be any point in Nk. Then by

Lemma 1 there is an infinite open and closed set Nk+iENk— {hk+i}.

Let Vk+i = Nk — Nk+y Then hk+iEVk+i and Vk+i is open and closed.

This completes the inductive construction.

Since each F¿ is an open F„ set, U«=i Vi is an open F„ set and it

follows that V is open and closed. This completes the proof.

James [6, p. 900 ] embedded the space (m) of bounded sequences

in C(H), H an infinite extremally disconnected compact Hausdorff

space, by using an infinite sequence of pairwise disjoint open and

closed subsets of H. Using Lemma 2 and James' procedure, we may

embed (m) in C(H) where H is an infinite basically disconnected

normal Hausdorff space (cf. [5, p. 257]). If {A,},"-!. { ̂ h-i and V
are as in Lemma 2, a suitable embedding, Q, may be defined by

Q(x) =/ implies

(0     if h E H - V,

\x(i)   ilhEVi,

where xE(m) and fEC(H).
Our theorem contains a result of Dean [2, p. 391].

Theorem. Let H be an infinite basically disconnected normal Haus-

dorff space and let the space (m) of bounded sequences be embedded in

C(H) as above; that is, let Q((m)) = (m')EC(H). Then a subspace B of

C(H) complementary to (m') is isomorphic to C(H) or is finite dimen-

sional.

Proof. Let fEC(H). Define 7/to be the element of (m1) for which

Tf(h) =f(hi) lor h and hi in F< as^in Lemma 2. Then T is a projection

of C(H) onto (m'), and C(H) is the direct sum of (m1) and the null
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space F of F; that is, CiH) = Y@(tn') (cf. [4, p. 91], [8, p. 538]). If
the set H' of points in H and not in the closure of 1)^! {hi} is finite,

then Fis finite dimensional (cf. [2, p. 392]).

If H' is infinite, then H' contains an infinite open and closed sub-

set H". For suppose each V, is finite. Then each hi is open and

Ujl, {h,} is an open F„ set. It follows that the closure of Ujli {hi} is

open and, hence, that H' itself is an infinite open and closed set. Alter-

natively, suppose some V, is infinite. Then, by Lemma 1, F¿— {hi}

contains an infinite open and closed subset H". In either case, by

Lemma 2, H" contains an infinite sequence { VI }?Li of nonempty,

pairwise disjoint, open and closed subsets. Let im") be the embedding

of im) in CiH) determined by the sequence { VI }*-%• Then im") is a

subspace of Y = Z®im") and CiH) =Z® im')® im").

Let J be an isomorphism of im") onto im')®im"). Define M on

Y to CiH) by Miz+x") =z+Jx"l for every z in Z and x" in im").

Then M is an isomorphism of Y with CiH) (cf. [2, p. 391]).

We have shown that Y is either finite dimensional or isomorphic

to CiH). To complete the proof, we need only show that B and Fare

isomorphic.

Since both B and Y complement im') in CiH), C(H) = B® im')

= Y® im'). Let P = I—T where / is the identity transformation of

CiH) onto C(H) and T is the projection defined above. Since Px' = 0

for x' in im'), PB = Y. If Pô = 0 for b in B, then b is also in im'), and

it follows that b = 0. Hence P is an isomorphism of B with Y, which

completes the proof.
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