
ON A CLASS OF LIE ALGEBRAS

ROBERT H. OEHMKE

In 1958, Block constructed a new class S3 of simple Lie algebras,

®(G, 5,/) [l]. Here © is the direct sum of a finite number of finite

elementary ^-groups, Go, • • • , G„, p>2 and 5 = 5i-(- • • • +5„ where

5¿ is a nonzero element of G,-. Let F be a field of characteristic p. Then

/ is a nondegenerate skew-symmetric biadditive form defined on each

Gi by fi(a, ß) =gi(a)hi(ß) —g%iß)hi(a) for a, ß in G¿ and where gf and

hi are additive functions on Gt to F with g¿(5,) =0. To each a^O, — S

of G the formal symbol v(a) is assigned. Then 2(G, b,f) is the vector

space over F with the v(a) 's as a basis. The multiplication in 2(G, b,f)

is defined by

n

v(a)v(ß) m E/<(«<, ftM« + 0 - «0
i—0

where ou and /3¿ are the components of a and ß in G,- and where 80

and v(0) denote 0.

Schäfer [5] showed that each of these Lie algebras can be realized

as the derived algebra of the algebra of inner derivations of a simple,

nodal, Lie-admissible noncommutative Jordan algebra A. If 8 is the

class of all such Lie algebras that can be realized in this manner then

Schafer 's result is that S 233- The main result of this paper is to show

that 8 contains S3 properly.

1. In this and subsequent sections A will denote a finite dimen-

sional, simple, nodal, Lie-admissible, noncommutative Jordan alge-

bra over a field F of characteristic p>2. Define A + to be the algebra

that is the same vector space as A but has a product xoy defined in

terms of the product xy of A by

xoy = \(xy + yx).

Define A ~ to be the algebra that is the same vector space as A but

has a product [x, y] defined in terms of the product xy by

[x, y] = xy — yx.

Kokoris [3] has shown that A+ is the commutative, associative

algebra 7"[xi, • • • , x„] of polynomials in Xi, • • • , x„ over F with the

restriction that x* = 0. Hence A+ = F1+N where N is the set of nil-

potent elements of A+.
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The multiplication in A can be given by

(1) fg-fog + jX—o — oc«

where d/dxi are the ordinary partial differential operators and Cq

= XjXy—x¡x¡. We shall confine our attention to the case « = 2. In [5]

it was shown that a pair of generators x and y could be chosen for

A+ such that

(2) yx — xy = yD(x) = 1 + ax*-1 o y5-1

for some a in P. By the multiplication given in (1) we see that a

completely determines the algebra A.

Theorem 1. If Ai and Ai are two algebras such that At and A¡ have

two generators and if they are defined by

(3) -vPi(x) = 1 + aixf-^yp-1

and

(4) vD2(u) = 1 + aiUp~l-v'-1

respectively then Ai and A2 are isomorphic if and only if ai=a2.

Proof. The sufficiency of the condition «i = a2 is of course trivial.

Therefore we shall assume A\ and ^42 are isomorphic. In fact we can

assume A =Ai = Ai and (x, y) and (u, v) are two pairs of generators

for A+. Then both u and v can be expressed as polynomials in x and y.

Jacobson [2] has shown that any representatives in A+ of the ele-

ments of any basis of the 2 dimensional space N/N o N will serve as

a pair of generators. Hence if x and y are generators of A+ then so

also are Xi = x+/(y) and yi = y where/(y) is of degree at least 1 in y.

For if the cosets with representatives x and y form a basis for the

space N/N o N then so also do the cosets with representatives

x+ay and y for any a in P. Clearly, this pair of generators will also

satisfy (3) for the same «i since y*Pi(y) =0andxJ_1oyi=1 = x3,_1oyp-1.

In the same manner, we can replace xi and yi by x2 = xi and y2 = yi

+g(xi) and still retain (3).

If « = 5ix+52y+/t(x, y) and » = S3x-f-54y+2(x, y) where h(x, y) and

q(x, y) are of degree at least 2 in x and y then, since vD2(u) = 1

-fa2wp_1 ou*-1, we have S1Ô4 — ô253 = 1. Therefore either oi54r¿0 or

bibi9*0. Without loss of generality we can assume that the coefficient

of x in « and the coefficient of y in » is not zero. For if 61S4 = 0 we can

replace u and v by «i= — v and »i = m and still retain (2). Now by a

suitable choice of the functions f(y) and g(xi) above we can assume
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there is a pair of generators x2, y2 such that

yiDi(xi) = 1 + aix2    o y2

and

u = biXt + h'(x2, y2) o xs,

v = Sr^i + q'(x2, y2) o y2,

where h' and q' are of degree at least 1 in x2 and y2.

We shall assume x and y are such a pair of generators. We have

mp-i 0 t,P-i = Sf-^j-p+ijcP-i o yp-1 = xp_1 o y*-1. Write

p-i

« =   E ««/*' ° y>
«,y=o

p-i

f =   E 0«** o y'
¿,y=o

and note that aoy = |3¿o = 0. The coefficient of xp_1 o yp_1 in the ex-

pression

p-i
vD2(u) =     E    (it - js)aijß,txi+'-1 o y>+t~l o (1 + aix^1 o y-1)

»■.y.í.í—o

= 1 + a2Mp_1 o DP-1 = 1 + «üx*-1 o yp-1

will occur on the left only if either (a) i+s — 1 =/+1— 1 =0 or (b) i+s

— l=j+t — l=p — l. If (a), then the coefficient is (aioßoi — «oij3io)ai.

But aio = Si=j80"i1 and j310 = aoi = 0. Therefore such a term will have a

coefficient cti. If (b), then i=— s and/=— I modulo p and (it—js)

= 0 modulo p. Hence we must have «i =a2 and the proof is complete.

2. Schäfer [S] has shown that the algebra A associated with the

algebra ®(C, 5, /) (if A+ has only two generators) has generators x

and y such that either

(6) yD(x) = 0(1 + x) o (1 + y)

or

(7) yD(x) = ß

for some nonzero ß in F. In the latter case by replacing x by ß~H

we see that A is an algebra satisfying (2) with a = 0. In the former

case, Schäfer has shown [5, p. 322] that A is an algebra that satisfies

(2) with a= —ßp~K We let ^)(A) be the set of inner derivations of A

and S)'(i4) the derived algebra of the algebra of inner derivations of
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A. Clearly if A\ and Ai are isomorphic so will 35'04i) and 35'(.4 s) be

isomorphic. However, the following theorem shows that the converse

does not hold for arbitrary fields P.

Theorem 2. If Ai and Ai are two algebras defined by the field ele-

ments «i and cti respectively then 3)'(4i) and 3)'(42) are isomorphic if

and only if there is a nonzero b in F such that «i = S^-1^.

Proof. Assume x and y are generators of At such that yPi(x)

= l+aixp~1 o y"-1. We can assume that ai9*0. For if «i = 0 then the

dimension of 3)'(4i), and hence 35'(.42), is P2~2 [5, Theorem 6].

Therefore a2 = 0 and Ai and 42 are isomorphic. Now if ai9*0 then

S)'(Ai)9i£)(Ai)^Ar/Fl [5, p. 320].
Let <r be an isomorphism from A^/F\ onto Ar/Fl. Since each ele-

ment of A^/Fl is a coset of the ideal PI of AJ and contains a unique

element of A,- we can consider a as a mapping of Ai onto A2. We let

o-(x' oyi)=zij. (When convenient we shall use the symbol "= " to

indicate the congruence relation induced in A~ by the ideal PI).

Lemma 1. If s, tQAJ and sDi(t) =0 then sDi(t) =0.

Proof. If sD,(/)=:0 then there is a 5GP such that sP¿(2) =5. As-

sume 5^0. Then s and t must be a pair of generators of At. But this

implies that (7) is satisfied contradicting our assumption above.

We return to the proof of the theorem. Since the elements x* o y',

OSi, júp — 1 with not both i andj equal to zero, form a basis for the

vector space Ni, the elements Zy form a basis for the vector space A2.

Hence there must be a pair, say « = zsiand v = zmn, that are generators

of At- Assume that both max(j, t) > 1 and max(m, n) > 1. Then

(x'oyODiO^'oyP-1) = (s - <)xp+,_2 o yp+«-2 = 0,
(o)

(xmoyn)Di(x^-1oyf-1) = (m — w)xp+m-2oyi>+n-2 = 0.

But since cr is an isomorphism on A^/Fl we must have

«P2(zp_i,j,_i) = vDi(zp-i,p-i) =- 0.

By Lemma 1 we have

wD2(zp_i,p_i) = i>P/2(zp_i,p_i) = 0.

By (1) we see that wP2(zp_i,p_i) =0 for all wQAt. It follows that

Zp_i,p_i = 0 [5, Lemma 2]. This is of course a contradiction of the

definition of zp_i,p_i. Hence we must have either 5, t = 1 or m, « = 1.

Say s, t = 1. Again by (8) we can not have s = t. So assume j = 1 and

t = 0 to get o-(x) = u.
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Now using Zp-1,0 in the same way we used zp-i,p-i we see that we

must have ra^l. By direct computation we see that there are two

types of terms that annihilate xm oyn in Aï/Fi. These are either of

the form w = xim o yin or x* o yp+1-> for j^n. For

(xm-yn)Di(xi-yk) = (in — mk)xm+i-1-yn+k-1 = 0

if and only if either in — mk = 0 or n+k — YSzp. No matter if m = 0

or 1, the first possibility holds precisely for these terms of the form

xim 0 yin for any nonnegative integer i. Clearly, the second possibility

holds precisely for those terms of the form xj 0 yp+1~' where j ^ « and

i is arbitrary. Hence if «^2 the subspace generated in Aï by such

w's is of dimension p(n— l)+r where r is the number of independent

terms of the form xim o yin. Therefore the dimension of the subspace

of elements in A2/F1 that annihilate v must be p(n — l)+r. How-

ever, if z= Eß¿i^í'0^', and zD2(v)^0 then we must have E^»'^-1

oj'o uD2(v) =0. Since A2 is simple uD2(v) must be nonsingular [4].

Therefore E^ß»;«'-1 on'=0 and 2 is a polynomial in v. But the sub-

space generated in A2/F\ by such z's is p — 1. Therefore w<2 and

a~x(v) is either x o y or y. Assume o-_1(u) = x o y. Then (x 0 y)7>i(x) =x

so we must have vD2(u)=u and z>7>2(«) =S + m for some ÔGF. Since

vD2(u) must be nonsingular we have ôf^O and [v o (b-\-u)~l]D2(u)

= 1. But as argued above we see that such an assumption gives rise

to a contradiction. Hence o-~l(v) =y.

Recall that above we showed that the only polynomials that anni-

hilate v were the polynomials in v. Hence it follows that ^(y*) =fi(v)

is a polynomial in v. Analogously, o-(x') =g¡(u) is a polynomial in u.

Conversely, by arguing on the dimension of the subspace generated

by the powers of y we see that cr-1^') =// (y), a polynomial in y, and

cr~1(u<)=gi(x), a polynomial in x. We must have for i>\ that

dgi(u)
o-O^-1) = <r(x*"7J>i(y)) = gi(u)D2(v) =-ouD2(v)

du

is a polynomial in u. Therefore, since u2 is a linear combination of the

gi's we must have u o uD2(v) a polynomial in u also. But then uD2(v)

= hi(u)+up~1 o h2(v). Since a similar restriction holds for vD2(u) we

must have

vD2(u) = 5i + Ô2M"-1 0 dp-1.

We shall now show by induction on the sum i+j that

(9) <r(x*' 0 y) = 5rl_/f V o !;''.
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Clearly, (9) holds if 4+j = l. Also, if 4+j>l andj>0 then

<r(jxioy'-1) = o-([x'o y'\Di(x)) = <r(x* o y3~)Di(u)

= do-(xf o y')/dv o vD2(u) = Sri_/+2M*' o p*-1.

Therefore 5ido-(x* o yty/dv+pbiU*-1 o vp~1=jbri~i+1ui o v1"1 where ß is

the coefficient of v in o(x* o y'). Since ju52mp_1 o o*-1 is the only term

of degree p — \ in z» we have p = 0. It follows that o-(x* o y') = 5r'-I+lMi

ov'oh(u). If 4 = 0 then <r(yi) is a polynomial in v. Hence h(u) is a

constant ß. If the constant ß is nonzero then z,-3- and u are generators

of At. But this implies, repeating the argument presented in this proof

that a~1(zij) = ey for some e in P. Hence z,,- = », ß = 0 and the induction

holds if 4 = 0. If 49*0 we can repeat the above argument using

<r(x* o y'~)Di(y) to get o-(x* o y') = ôri-I+1w* o »'. Therefore (9) holds

for all 4 and j. However, aíff(xp~1 o y"-1) =fP2(y) =S2mp_1 o »p_1 since

yPi(x) sajxP-1 o yp_1. But then ai5r2p+3 = 52. Now replace the gener-

ators u and v in At by «' = Sf1« and »' =» to get

v'D2(u') = sr^LMw)) = i + br^iu*-1 o V-*

= 1 + ai5r2p+2«p_1 o s*-1 = 1 -f- ai5Tp+1(bT1u)>>-1 o V1

= 1 + aibrp+1u''f-1 o v,p-\

Hence the necessity of the condition for an isomorphism holds.

Conversely, let x and y be generators of At and u and v be gener-

ators of At such that

yPi(x) = 1 + aiXP-1 o y*-1

»P2(m) = 1 + c*iSrp+1wp_1 o v»-1

for some nonzero biQF. Define the linear mapping a from .4i to .42 on

the basal elements x' o yi by

<r(x* o y1") = Sr^'m* o i»'.

A straightforward computation shows that a is an isomorphism of

4j~/Pl onto Aï/Fl. As noted above each algebra of 58 can be ob-

tained from an algebra A satisfying (2) with either a = 0 or a = — |3P_1

for some ßQF. It was shown [4, Theorem 3] that those algebras of

93 with the corresponding a = 0 or — /3P-1 are of dimension p2 — 2 and

p2 — 1 respectively. Therefore there are at least two nonisomorphic

algebras in 23. However from Theorem 2 we see that all of the algebras

of 93 obtained from an algebra 4 with a=— /3P_1 are isomorphic.

Hence

Corollary. There are two nonisomorphic types of algebras in 33 cor-
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responding to an A such that A+ has two generators; one of dimension

p2 — \ and one of dimension p2—2.

To construct an algebra in 8 but not in 93 we need only choose a

field F containing an element a such that xp~1-\-a is irreducible over

F.

Corollary. The class 93 is properly contained in in the class 8.
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