ON A CLASS OF LIE ALGEBRAS
ROBERT H. OEHMKE

In 1958, Block constructed a new class 9B of simple Lie algebras,
®(G, 8, f) [1]. Here ® is the direct sum of a finite number of finite
elementary p-groups, Go, * -+, G, p>2 and §=08;+ - - - +8, where
0;is a nonzero element of G;. Let F be a field of characteristic p. Then
fis a nondegenerate skew-symmetric biadditive form defined on each
G: by fi(e, B) =gi{a)hi(B) —gi(B)hi(e) for a, B in G; and where g; and
h; are additive functions on G; to F with g;(§;) =0. To each a#0, —§
of G the formal symbol v(«) is assigned. Then (G, 9, f) is the vector
space over F with the v(a)’s as a basis. The multiplication in (G, §, f)
is defined by

2(@)o(8) = 2 fila, Bv(a + B — &)
t==(
where a; and B; are the components of @ and 8 in G; and where §,
and 9(0) denote 0.

Schafer [5] showed that each of these Lie algebras can be realized
as the derived algebra of the algebra of inner derivations of a simple,
nodal, Lie-admissible noncommutative Jordan algebra 4. If € is the
class of all such Lie algebras that can be realized in this manner then
Schafer’s result is that 2 2%. The main result of this paper is to show
that € contains 8 properly.

1. In this and subsequent sections 4 will denote a finite dimen-
sional, simple, nodal, Lie-admissible, noncommutative Jordan alge-
bra over a field F of characteristic > 2. Define A+ to be the algebra
that is the same vector space as 4 but has a product x o y defined in
terms of the product xy of 4 by

zoy = 3(xy + y2).

Define A~ to be the algebra that is the same vector space as 4 but
has a product [x, y] defined in terms of the product xy by

[x, y] = zy — ym.

Kokoris [3] has shown that A+ is the commutative, associative
algebra F[xi, - - -, %,] of polynomials in xy, - - - , x, over F with the
restriction that 7 =0. Hence A+= F1+4N where N is the set of nil-
potent elements of A+.
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The multiplication in 4 can be given by

of g
0—0¢ij
0x; 6x,~

1
1) fg=f°8+72

where 9/9x; are the ordinary partial differential operators and c;;
=x;—%;%:. We shall confine our attention to the case n=2. In [5]
it was shown that a pair of generators x and y could be chosen for
A+ such that

)] yx — xy = yD(x) = 1 4 axr1o y*!

for some « in F. By the multiplication given in (1) we see that «
completely determines the algebra A.

THEOREM 1. If A, and A, are two algebras such that A} and AF have
two generators and if they are defined by

3) vDi(x) = 1 4 agart.y7!
and
4) vDy(u) = 1 + oqur—1t-9pp?

respectively then Ay and A, are isomorphic if and only if on=au.

Proor. The sufficiency of the condition oy =ea; is of course trivial.
Therefore we shall assume 4, and A, are isomorphic. In fact we can
assume 4 =A4;=A4; and (x, ) and (%, v) are two pairs of generators
for A+. Then both % and v can be expressed as polynomials in x and y.
Jacobson [2] has shown that any representatives in A+ of the ele-
ments of any basis of the 2 dimensional space N/N o N will serve as
a pair of generators. Hence if x and y are generators of A* then so
also are x;=x-+f(y) and y1=7y where f(y) is of degree at least 1 in y.
For if the cosets with representatives x and y form a basis for the
space N/No N then so also do the cosets with representatives
x+ay and vy for any a in F. Clearly, this pair of generators will also
satisfy (3) for the same a; since y*Di(y) =0and 27" 0y~ =x?~1oy7 1,
In the same manner, we can replace x; and y; by x2=x; and y:=m
+g(x;) and still retain (3).

If u=08x+8y+h(x, y) and v==0sx+8:,y+q(x, ¥) where h(x, y) and
g(x, y) are of degree at least 2 in x and y then, since vD,(u) =1
+aurt o9, we have 6,8,—08:0;=1. Therefore either 8,0,70 or
8,03%0. Without loss of generality we can assume that the coefficient
of x in % and the coefficient of ¥ in v is not zero. For if 6:0,=0 we can
replace 4 and v by %= —v and v;=u and still retain (2). Now by a
suitable choice of the functions f(y) and g(x:) above we can assume
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there is a pair of generators x;, ¥, such that

—1
yaDy(x2) = 1 + ars o ¥

and

% = 81x3 + K (%4, y2) O 23,

)] 1 /
v = 67y, -+ ¢ €79 yZ) 0%,

where b’ and ¢’ are of degree at least 1 in x; and y,.
We shall assume x and y are such a pair of generators. We have
ur1 o yr-1=§"157rtixr—1 o yr~1=xr—1 0 y»—1. Write

p—1
u= 2 amioy,
$,5=0

p—1
v = E B;,-x"o yj
3,5=0
and note that agj=R:=0. The coefficient of x»~! 0 y#~! in the ex-
pression

—1

vDy(n) = D, (it — js)aBuxtt10 y 10 (1 + asaro y#-Y)

£,7,8,t=0

=14 awr o =1+ axx?loy!

will occur on the left only if either (a) i+s—1=j+t—1=00r (b) i+s
—1=j+t—1=p—1.1If (a), then the coefficient is (a10801— ao1Bro) .
But a10=28, =05 and Bio=an =0. Therefore such a term will have a
coefficient . If (b), then i=—s and j= —¢ modulo p and (it —js)
=0 modulo p. Hence we must have oy =, and the proof is complete.

2. Schafer [5] has shown that the algebra 4 associated with the
algebra ®(G, 8, f) (if A+ has only two generators) has generators x
and y such that either

(6) yD(x) = B(1 +x)o (1 + y)
or
@) yD(x) = B

for some nonzero 8 in F. In the latter case by replacing ¥ by 8~x
we see that A4 is an algebra satisfying (2) with «=0. In the former
case, Schafer has shown [5, p. 322] that 4 is an algebra that satisfies
(2) with o= —p7~1, We let D(4) be the set of inner derivations of 4
and D'(4) the derived algebra of the algebra of inner derivations of
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A. Clearly if 4; and A, are isomorphic so will D’(4,) and ©'(4,) be
isomorphic. However, the following theorem shows that the converse
does not hold for arbitrary fields F.

THEOREM 2. If A, and A, are two algebras defined by the field ele-
ments oy and oy respectively then D' (A1) and D' (A,) are isomorphic if
and only if there is a nonzero 6 in F such that oy = 67"'a,.

Proor. Assume x and y are generators of A such that yD;(x)
=1+4ax?1 0 y7~L. We can assume that a;%0. For if oy =0 then the
dimension of ©'(4:), and hence D'(4,), is p?—2 [5, Theorem 6].
Therefore a;=0 and 4, and A4, are isomorphic. Now if ;540 then
D'(41)=D(A1)=Ar/F1 [5, p. 320].

Let ¢ be an isomorphism from 45 /F1 onto A3/ F1. Since each ele-
ment of 4;/F1 is a coset of the ideal F1 of A; and contains a unique
element of N; we can consider ¢ as a mapping of N; onto N,. We let
o(xf 0 ¥%) =2;;. (When convenient we shall use the symbol “= " to
indicate the congruence relation induced in A7 by the ideal F1).

LeEmMA 1. If s, tE AT and sD;(t) =0 then sD;(t) =0.

Proor. If sD;(f)=0 then there is a & F such that sD;(f) =48. As-
sume 0. Then s and ¢ must be a pair of generators of A;". But this
implies that (7) is satisfied contradicting our assumption above.

We return to the proof of the theorem. Since the elements x* o y7,
0=1,j=p—1 with not both 7 and j equal to zero, form a basis for the
vector space N, the elements z;; form a basis for the vector space N,.
Hence there must be a pair, say ¥ =2,; and v =32,,, that are generators

of AF. Assume that both max(s, £) >1 and max(m, n) > 1. Then
(x*0y) Di(a* 0 y777) = (s — f)art*—2 o yr+i=2 = (),
(zmoy") Dy(xP o y7Y) = (m — n)artm—2oyrin=? = (.

©)

But since ¢ is an isomorphism on A7 /F1 we must have

4Ds(2p-1,p-1) = vD3(3p-1,p-1) = 0.
By Lemma 1 we have
uD2(zp—l,p—l) = ‘ng(z,,_l'p_l) = (.

By (1) we see that wDs(2,1,,-1) =0 for all w& A4,. It follows that
Zp-1,5-1=0 [5, Lemma 2]. This is of course a contradiction of the
definition of z,_1,,-1. Hence we must have either s, t<1 or m, n 1.
Say s, t<1. Again by (8) we can not have s=¢. So assume s=1 and
t=0 to get o(x) =u.
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Now using 2,-1,0 in the same way we used 2,-1,,-1 We see that we
must have m =1. By direct computation we see that there are two
types of terms that annihilate x™ o y» in Ay /F1. These are either of
the form w=x o yi* or x* o y?*+1=i for j<n. For

(xm-y7) Dy(xF - 9%) = (in — mk)agmHit.ynti=1 =

if and only if either in—mk=0 or n+k—1=p. No matter if m=0
or 1, the first possibility holds precisely for these terms of the form
x*™ o 9 for any nonnegative integer 4. Clearly, the second possibility
holds precisely for those terms of the form x* o y#*'~7 where j <7 and
1 is arbitrary. Hence if # =2 the subspace generated in 4 by such
w’s is of dimension p(n—1)+r where r is the number of independent
terms of the form x" o y*, Therefore the dimension of the subspace
of elements in 45 /F1 that annihilate ¥ must be p(n—1)+r. How-
ever, if 3= ) Biu‘ oo and zD;(v) =0 then we must have » i8;u*!
o v o uDy(v) =0. Since 4, is simple #D;(v) must be nonsingular [4].
Therefore Y i8;;u"~1 0 v=0 and z is a polynomial in ». But the sub-
space generated in A5/ F1 by such z’s is p—1. Therefore # <2 and
o~ 1(v) is either x 0 y or y. Assume ¢~1(v) =x 0 ¥. Then (x 0 y)D1(x) =x
so we must have vDy(#) =u and vDy(u) =6+u for some §E F. Since
vDy(u) must be nonsingular we have 850 and [v o (§+u)~!]Dy(u)
=1. But as argued above we see that such an assumption gives rise
to a contradiction. Hence ¢=1(v) =49.

Recall that above we showed that the only polynomials that anni-
hilate v were the polynomials in v. Hence it follows that o(y®) =f(v)
is a polynomial in v. Analogously, o(xf) =g:(#) is a polynomial in u.
Conversely, by arguing on the dimension of the subspace generated
by the powers of y we see that 6—1(v¥) =f/ (¥), a polynomial in y, and
o (u®) =g/ (x), a polynomial in x. We must have for ¢>1 that

agi(u)

o(x71) = a(2*D1(y)) = g:(u) D2(v) = 0 uDs(v)

is a polynomial in . Therefore, since %2 is a linear combination of the
gi's we must have % o #D,(v) a polynomial in « also. But then «D,(v)
=hy(u) +u?"! 0 ho(v). Since a similar restriction holds for vD,(x) we
must have

vDy(u) = 81 + sy~ lovrl,
We shall now show by induction on the sum 7+4j that

9 a(x*oy?) = o7 luiovi,
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Clearly, (9) holds if +j=1. Also, if +j>1 and ;>0 then

o(j# 0 31) = o([## 0 3] Dy(x)) = o(* 0 37) Da(u)
= 9o (x* 0 97)/3v 0 vD2(u) = Sy #2yi 0 viL,

Therefore ;00 (x* 0 ¥7) /v +ud.u?—! 0 v?~1=jbr —i*+1yi 0 vi~! where u is
the coefficient of v in o(x* 0 7). Since udu?~! 0 v?7~1 is the only term
of degree p—1 in vy we have u=0. It follows that o(x* o y?) =67 i+1us
ovio h(u). If =0 then o(y?) is a polynomial in v. Hence h(x) is a
constant f. If the constant 8 is nonzero then 2;; and % are generators
of AF. But thisimplies, repeating the argument presented in this proof
that 0—!(2;;) = ey for some ein F. Hence z;;=v, 8=0 and the induction
holds if 2=0. If 7#0 we can repeat the above argument using
o(x 0 ¥)Dy(y) to get a(xfo y7) =67 +1ui 0 vi. Therefore (9) holds
for all 7 and j. However, a;o(x?~! 0 y7~1) =vD,(y) =6,u?~1 0 v#~1 since
yD1(x) =a1x?~! 0 y*~1. But then ;67 %+3=45,. Now replace the gener-
ators # and v in 45 by %’ =087 and v’ =v to get

o' Do(u') = 67 (v D2(u)) = 1 + 67%ur 1o vr!
=14 ad7??t2yrloor~! = 1 4 @id7?H (67 u)?—1 0 v#-!
=14+ adrrtiu’7 104’71,
Hence the necessity of the condition for an isomorphism holds.
Conversely, let x and y be generators of Af and % and v be gener-
ators of AF such that
yDy(x) = 1 4 ayxrlo g7 !
vDy(u) = 1 4 adi?rtiur—loyr1!

for some nonzero §;E F. Define the linear mapping ¢ from 4; to 4; 0on
the basal elements x o 37 by

a(xio y9) = d7#ui o vi.

A straightforward computation shows that ¢ is an isomorphism of
A7 /F1 onto A5 /F1. As noted above each algebra of B can be ob-
tained from an algebra A satisfying (2) with either =0 or = — 7!
for some BE F. It was shown [4, Theorem 3] that those algebras of
B with the corresponding a=0 or —fB7~! are of dimension p2—2 and
p*—1 respectively. Therefore there are at least two nonisomorphic
algebras in 8. However from Theorem 2 we see that all of the algebras
of B obtained from an algebra A with a=—f37"! are isomorphic.
Hence

CoRroLLARY. There are two nonisomorphic types of algebras in B cor-
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responding to an A such that A+ has two generators; one of dimension
p2—1 and one of dimension p2—2.

To construct an algebra in € but not in 8 we need only choose a
field F containing an element « such that x#~!4« is irreducible over
F.

COROLLARY. The class B is properly contained in in the class L.
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