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1. Introduction. Let D denote a bounded domain in En and I the

interval 1 ̂  t < oo. Let L be the second-order hyperbolic operator

d2 »     d   /       d \

dt2        i=i   dXi\       dXj/

defined on R — DX.I. Introducing the norms

||w(0||o =   I   u2 dx,

for functions u in C2iR), Protter  [4] investigated the asymptotic

behavior of solutions of inequalities of the form

(1.2) ||£«(0||o3á*(0||«(fl||i-

If r is the boundary of D, he found that any solution of (1.2) which

satisfies the conditions

u = 0   on    r X /,

lim /a||w(0||i = 0   for alia > 0,

must vanish identically, provided that

(1.3) *(0 = O(r»),      ^'=o(r').
at

Conditions for other types of asymptotic behavior have also been

studied by Protter [5].

It is the purpose of this paper to find sufficient conditions for the

existence of lower bounds of the form

\\uit)\\i^ C\\uito)\\i[Kit)}-\      taut 1,

where C is a positive constant and K is a differentiable function satis-

fying
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(1.4) K(t)>0,       K'(t)^0,        lim £(<)=».
I-.00

In particular, it will be shown that in the case K(t) =ta, a lower bound

exists under conditions somewhat weaker than (1.3). The results will

also be extended to symmetric hyperbolic operators.

The author wishes to thank M. H. Protter for a number of valuable

suggestions.

2. Second-order hyperbolic inequalities. Let L be the operator

defined by (1.1). We assume aij = ajiEC1(R), and suppose that there

are positive constants m and M such that

» Ê ti = Ê <M& = AT Ê &¿=i i,y=i i=i
For functions uEC2(R) we introduce the norm

||«(0|
f r/oW    »     du dui

J D LV óv        ¿,3=i        dx¿   dx,J

which is equivalent to the norm ||«(i)||i. If w = 0 on rX-7, it is easily

seen that

d
— \\u
dt

„ f   du r    "    da,-,-   dw   5m
(0||* = 2       —Ludx+        £ -L-d*-

J d  dt J d i,j=i    dt     dXi   dXj

Hence for any function K satisfying (1.4), we have the identity

d

dt
(2.1)

[ä-20)||«(0||2] = 2K(t)K'(t)\\u(t)\\2 + 2K2(t) f  —Ludx
J D  dt

/'    JL   da»    du    du
£-dx.

D i.j=i    dt     dXi   dXj

Assume m is a solution of

(2.2) \\Lu(t)\\o Ú <p(t)\\u(t)\\,

such that u = 0 onYXl, and let ^ be a function satisfying

/'     "    da»   du   du m      m

D ¿,3-i    ot     dXi   dXj

Applying Schwarz's inequality and (2.2) to the second term on the

right-hand side of (2.1), and applying (2.3) to the third term of the

same expression, we find that
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^-[£*(fl||«(0||,J = 2K2it)\\uit)\\2\^- -fit)
dt L Kit)

where we have set f = <j>-\-p. It follows that

d r m        ,m K'it)
(2.4) -log[if«)||«(0||] = -^7T-/C)

0/ a(/)

if ||«(t)||^0.

Theorem. Le/ m ¿>e a solution of (2.2) síícA íAoí ¿í = 0 ora TXL i/

||m(io)|| 5^0 arad etíAer

(i) iK'/Kyi*-y E 1,(1, ») /or jowe p,       1 g p <  00,

or

(ii) Kf/K'EL„il, *)   ««d   ||*//#'||- = 1,

/Aera /Aere cxwís a positive constant C such that

(2.5) ||«(o|| ^ cï|«(/0)|| [£(/)]-',     í = ío è i.

Proof. We first assume that ||w(/)|| ^0 for t^t0. Integrating (2.4)

between to and / we obtain

.... ,      Kjt)\\uit)\\   ^     Kit)       f
(2.6) log-n-rr = l°g-|   fds.

tf(io)l|«(*o)|| Kito)      Jj

In case (i), Holder's inequality implies that

\ cl   i   r r'i/i^'x-1'4 i" T/pr r( £'   '

IJ,/HsUKt) 'M [/„t*.
l/a

ú n\ log
2T(0~>-T
Kito) J

where TV is a constant and l/p + l/o = 1. Hence, since liin(,œ Kit) = °o,

we see that the right-hand side of (2.6) is bounded below, and (2.5)

follows. Under case (ii), the right-hand side of (2.6) is easily seen to

be non-negative.

To prove that the assumption ||w(f)|| 5^0 is valid for all t^t0, we

suppose the contrary. Let ti>t0 be the least value of / for which ||w(i)||

= 0. Then from the preceding result we find that (2.5) holds for

toikKh. By the continuity of the norm, we must have ||m(íi)|| ^0.

This completes the proof of the theorem.
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If K(t)=t", a>0, conditions (i) and (ii) become: either tl~llpf

ELP(1, oo) for somep, 1 f¿p< », or tfEL„(l, ») and \\tf\\x^a, which
include Protter's conditions (1.3). For K(t) =eat, a>0, the conditions

for the corresponding lower bound are:/GLP(l, <x>) for some p, lúp

< », or fELn(l, °°) and ||/||«,áa. These include the conditions ob-

tained by Protter in [5], and are comparable to those found by Prot-

ter [3], Cohen and Lees [2] and Agmon and Nirenberg [l] for solu-

tions of parabolic inequalities.

3. Symmetric hyperbolic inequalities. Let u be a ¿-component

vector function in Cl(R) and denote the components of u by u',

j=l, 2, • • • , k. For such functions we define

du        "        du
Lu = Ao-h 2_, Ai->

dt       i=i        dXi

where the Ai, i = 0, 1, ■ ■ ■ , n, are symmetric ß-by-& matrices with

elements in C1(R), and A0 is positive definite. We take as norms the

quantities

ith

lM(')||o =   I   (u, u)dx,
J D

\u(t)\\   =   I   (A0u,u)dx,
J n

(u, ») = E u'v'
»-i

Since Ao is symmetric, we have

d „       ,, C (       du        dA<>        \

ï»-«l-J,("'ï+"ir "•')"
C ( "        du       dAo        \

=  I   I 2L« — 2 ¿_j A i-1-«, m ) dx.
J d\ í=i       dXi dt I

Similarly, it follows that

r (    du     \ 1  r Id Ai      \
I   I A i-> u)dx =-I   (-u, u 1 dx,

J d \     dx,      / 2 J D\dxi )

for functions u which vanish on the boundary TXI. Thus, defining
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dt <_i   dXi

we find that

d
(3.1) -Ik<)||2=  f (2Lu

dt J d
+ Bu, u)dx.

Suppose u is a solution of (2.2) and u vanishes on YXI. Let \f/ be

a function satisfying

IX(Bu, u)dx á 2t(t)h(t)\[<

Then the identity (3.1) implies that u satisfies the inequality (2.4),

so the theorem of §2 is also valid in the present case.
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