NONDIFFERENTIABILITY OF RETRACTIONS OF
C» TO SUBVARIETIES

M. GILMARTIN

Theorem 5.2 of [1] says that if x is a singular point of a complex
subvariety V of an open subset of C?, then for no open neighborhood
N of x in C~ is there a holomorphic retraction of N to VN N. It will be
proved here that there isn’t even a real-C! retraction.

LEMMA. If a complex subvariety V of an open subset U of C* is a
real-C' submanifold, it is a complex submanifold.

ProoF. The set R(V) of points of V having open neighborhoods in
V which are complex submanifolds of open subsets of C* is dense in
V. For yEV let V, denote the tangent space at y to the real-C* sub-
manifold V of U. V, is a real-linear subspace of C" for all y& V. Let
A be the set of all y& V such that V), is a complex-linear subspace of
C». Then 4 is a relatively closed subset of V. Also, since R(V)CA4,
A4 is dense in V. Hence A =V. V, is a complex-linear subspace of C»
for all yE V. So V is a complex submanifold of U.

THEOREM. Let V be a complex subvariety of an open set U C". Let
xE V. Suppose there exist an open neighborhood U, of x in U and a
real-C* retraction F of Uyto VU, Then xER(V).

Proor. Choose a real-C! submanifold S of an open neighborhood
U, of x in U, such that SD VN U, and the real dimension s of S is
minimal for this property. If s=0 then «x is an isolated point of V,
and hence in R(V). So suppose s>0. If f is a real-C! function on S
such that (df),#0, then the set S; of zeros of f is a submanifold of real
dimension s —1 in some neighborhood of x in S, so by the minimality
of the dimension of S, .S; contains no neighborhood of x in V, so f
vanishes on no neighborhood of x in V. In other words, if f is a real-C!
function on S vanishing on VN U,, then (df),=0. If f and g are real-
C! functions on S which coincide on VN U, then (df),=(dg).. Since
F equals the identity on VU, (d(F l S))z=(dI),, where I is the
identity on S. Thus (d(FI S))z has rank s. By the inverse function
theorem F(S)C V is a neighborhood of x in S. There is an open neigh-
borhood U; of x in U, such that VM U;=SNU;. By the lemma,
VN U, is a complex submanifold of Us. xS R(V).
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The purpose of this note is to prove an existence theorem for im-
mersions of piecewise linear manifolds in Euclidean space. A more
comprehensive theory of piecewise linear immersions has been
worked out by Haefliger and Poenaru [1].

All maps, manifolds, microbundles, etc. are piecewise linear unless
the contrary is explicitly indicated.

Let M be a manifold without boundary, of dimension #. Denote
the tangent microbundle of M by 74, and the trivial microbundle
over M of (fibre) dimension k by €. Let

g
vM—-ESM
be a microbundle of dimension % such that E is a manifold. An im-
mersion of M in R*** is a locally one-one map f: M—Rnt*,

I say f has a normal bundle of type v if there is an immersion
g: E-R** such that gi=f. (It is unknown whether f necessarily
has a normal bundle, or whether all normal bundles of f are of the
same type.)

The converse of the following theorem is trivial.

THEOREM. Assume that if k=0, then M has no compact component.
There exists an immersion of M in R*** having a normal bundle of type v
if there exists an isomorphism

¢ Tm D v etE

ProoF. We may assume that 7(M) is a deformation retract of the
total space E of ». By Milnor [3], 75 |i(M) is isomorphic to 74 ®v;
it follows from the existence of ¢ that 7g is trivial. According to [3]
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