NONDIFFERENTIABILITY OF RETRACTIONS OF Cⁿ TO SUBVARIETIES

M. GILMARTIN

Theorem 5.2 of [1] says that if x is a singular point of a complex subvariety V of an open subset of C^n , then for no open neighborhood N of x in C^n is there a holomorphic retraction of N to $V \cap N$. It will be proved here that there isn't even a real- C^1 retraction.

LEMMA. If a complex subvariety V of an open subset U of C^n is a real- C^1 submanifold, it is a complex submanifold.

PROOF. The set R(V) of points of V having open neighborhoods in V which are complex submanifolds of open subsets of C^n is dense in V. For $y \in V$ let V_y denote the tangent space at y to the real- C^1 submanifold V of U. V_y is a real-linear subspace of C^n for all $y \in V$. Let A be the set of all $y \in V$ such that V_y is a complex-linear subspace of C^n . Then A is a relatively closed subset of V. Also, since $R(V) \subseteq A$, A is dense in V. Hence A = V. V_y is a complex-linear subspace of C^n for all $y \in V$. So V is a complex submanifold of U.

THEOREM. Let V be a complex subvariety of an open set $U \subseteq C^n$. Let $x \in V$. Suppose there exist an open neighborhood U_1 of x in U and a real- C^1 retraction F of U_1 to $V \cap U_1$. Then $x \in R(V)$.

PROOF. Choose a real- C^1 submanifold S of an open neighborhood U_2 of x in U_1 such that $S \supseteq V \cap U_2$ and the real dimension s of S is minimal for this property. If s=0 then x is an isolated point of V, and hence in R(V). So suppose s>0. If f is a real- C^1 function on S such that $(df)_x \ne 0$, then the set S_1 of zeros of f is a submanifold of real dimension s-1 in some neighborhood of x in S, so by the minimality of the dimension of S, S_1 contains no neighborhood of x in V, so f vanishes on no neighborhood of x in S. In other words, if S is a real-S function on S vanishing on S which coincide on S in S then S is a real-S functions on S which coincide on S in S then S is a real-S function of S is a neighborhood of S in S. There is an open neighborhood S is a neighborhood of S in S. There is an open neighborhood S is a complex submanifold of S in S is a complex submanifold of S in S is a complex submanifold of S in S in S in S in S in S in S is a complex submanifold of S in S in

REFERENCE

1. H. Rossi, Vector fields on analytic spaces, Ann. of Math. 78 (1963), 455-467.

PRINCETON UNIVERSITY

ON PIECEWISE LINEAR IMMERSIONS

MORRIS W. HIRSCH

The purpose of this note is to prove an existence theorem for immersions of piecewise linear manifolds in Euclidean space. A more comprehensive theory of piecewise linear immersions has been worked out by Haefliger and Poenaru [1].

All maps, manifolds, microbundles, etc. are piecewise linear unless the contrary is explicitly indicated.

Let M be a manifold without boundary, of dimension n. Denote the tangent microbundle of M by τ_M , and the trivial microbundle over M of (fibre) dimension k by ϵ^k . Let

$$\nu\colon M\stackrel{i}{\to} E\stackrel{j}{\to} M$$

be a microbundle of dimension k such that E is a manifold. An *immersion* of M in \mathbb{R}^{n+k} is a locally one-one map $f: M \to \mathbb{R}^{n+k}$.

I say f has a normal bundle of type ν if there is an immersion $g: E \rightarrow R^{n+k}$ such that gi = f. (It is unknown whether f necessarily has a normal bundle, or whether all normal bundles of f are of the same type.)

The converse of the following theorem is trivial.

THEOREM. Assume that if k=0, then M has no compact component. There exists an immersion of M in R^{n+k} having a normal bundle of type ν if there exists an isomorphism

$$\phi \colon \tau_m \oplus \nu \to \epsilon^{n+k}$$

PROOF. We may assume that i(M) is a deformation retract of the total space E of ν . By Milnor [3], $\tau_E | i(M)$ is isomorphic to $\tau_M \oplus \nu$; it follows from the existence of ϕ that τ_E is trivial. According to [3]

Received by the editors July 29, 1964.