A NOTE ON INDEFINITE INTEGRALS

MITCHELL H. TAIBLESON

In this note all functions are measurable, complex valued and periodic on the real line; all distributions are tempered and periodic on the real line. Periodic means periodic of period 2π . If f is a function $||f(x)||_{p,d\mu(x)}$ is the L^p norm of f, taken with respect to the measure $d\mu$ on $[0, 2\pi]$; $||f||_p$ is the L^p norm taken with respect to ordinary Lebesgue measure; and L^p is the class of those functions f such that $||f||_p < \infty$. If F is a function, we let $\Delta^2 F(x, h) = F(x+h) - 2F(x) + F(x+h)$.

M. Weiss and A. Zygmund have shown (Theorem 1 and Theorem 3 in [3]):

THEOREM A. (i) If $\|\Delta^2 F(x, h)\|_{p,dx} = O[|h|/|\log|h||]^{\beta}$, $1 \le p \le 2$, $\beta > 1/p$, then F is equal, a.e., to the indefinite integral of a function f, and $f \in L^p$. (ii) If $\|\Delta^2 F(x, h)\|_{p,dx} = O[|h|/|\log|h||]^{\beta}$, $2 \le p < \infty$, $\beta > 1/2$, then F is equal, a.e., to the indefinite integral of a function f, and $f \in L^p$. (iii) If $\|\Delta^2 F(x, h)\|_{\infty,dx} = O[|h|/|\log|h||]^{\beta}$, $\beta > 1/2$, then F is equal, a.e., to the indefinite integral of a function f and $f \in L^p$ for all p, $1 \le p < \infty$.

Remark. The assertion (iii) is, of course, an immediate corollary of (ii).

Our main objective is to supply a bound on the L^p norm of the derivative f, as well as indicating the connection of these results with a large body of results relating smoothness and differentiability conditions.

DEFINITION 1. Suppose $0 < \alpha < 2$, $1 \le p$, $q \le \infty$. If $F \in L^p$ and $M_{\alpha; p, q} = \left\| \left\| \Delta^2 F(x, h) \right\|_{p, dx} / \left| h \right|^{\alpha} \right\|_{q, dh/|h|} < \infty$, we say $F \in \Lambda^{pq}_{\alpha}$ and set $\left\| F \right\|_{\alpha; p, q} = M_{\alpha; p, q} + \left\| F \right\|_{p}$.

Since $||F||_{\alpha;p,q} \le ||F||_{\alpha;\infty,q}$, Theorem A is seen to be a corollary of the following result.

THEOREM. Suppose $1 \le p < \infty$, $r = \min[p, 2]$, $F \in \Lambda_1^{pr}$. Then F is equal, a.e., to the indefinite integral of a function f belonging to L^p , and there is a constant C_p , depending only on p, such that $||f||_p \le C_p ||F||_{1:p,r}$.

PROOF. We need to show that if $F(x) \sim \sum c_n e^{inx}$, then $\sum inc_n e^{inx}$ is the Fourier series of a function f in L^p and that $||f||_p \leq C_p ||F||_{1;p,r}$.

We state several definitions and lemmas, from which the result easily follows. (The crucial step is Lemma 2.)

Received by the editors July 9, 1964.

DEFINITION 2. If f is a distribution, $f(x) \sim \sum d_n e^{inx}$, $J^{\alpha}f$ (α complex), is the distribution $J^{\alpha}f(x) \sim \sum (1+|n|^2)^{-\alpha/2}d_n e^{inx}$.

This is the Bessel potential operator of order α for the one-dimensional periodic case, and is discussed in the paragraphs preceding Lemma 19 in [1].

LEMMA 1. For α complex, $\{b_n^{\alpha}\}_{-\infty}^{\infty}$, $b_n^{\alpha} = (|n|^2/(1+|n|^2))^{\alpha}$, $n \neq 0$; $b_0^{\alpha} = 0$, are the Fourier coefficients of a finite Borel measure.

This is Lemma 19 of [1]. It is proved there for α real, but the proof easily extends to complex α . (We use only the case $\alpha = 1/2$.)

DEFINITION 3. If $f = J^{\alpha}\phi$, $\phi \in L^p$, α complex, $1 \le p \le \infty$, we say $f \in L^p$ and define $||f||_{p,\alpha} = ||\phi||_p$.

LEMMA 2. If $1 \le p < \infty$, $r = \min[p, 2]$ $(0 < \alpha < 2)$ then $\Lambda_{\alpha}^{pq} \subset L_{\alpha}^{p}$. The inclusion map is continuous.

The spaces defined in Definition 3 and Definition 1 are discussed in detail in Chapter VIII of [1]. Lemma 2 is part of Theorem 15' of [1], specialized to the one-dimensional case.

Let $f \to \tilde{f}$ be the conjugate mapping. That is if $f(x) \sim \sum d_n e^{inx}$, $\tilde{f}(x) \sim \sum i \operatorname{sgn} n d_n e^{inx}$.

LEMMA 3. The conjugate operator maps Λ_{α}^{pq} continuously into itself, $0 < \alpha < 2, 1 \le p, q \le \infty$.

This is the one-dimensional version of Theorem 3 of [2].

We proceed with the proof. We have $F(x) \in \Lambda_1^{pr}$, $F(x) \sim \sum c_n e^{inx}$. Lemma 3 asserts that $\sum i \operatorname{sgn} nc_n e^{inx}$ is the Fourier series of a function $g \in \Lambda^{pr}$ and that

(1)
$$||g||_{1;p,r} \leq A_p ||F||_{1;p,r}$$

for some A_p independent of F. Lemma 2 asserts that $g \in L_1^p$, so that (using Definition 1 and Definition 3) $\sum (1+|n|^2)^{1/2}i$ sgn nc_ne^{inx} is the Fourier series of a function $h \in L^p$ and

(2)
$$||h||_{p} = ||J^{-1}g||_{p} = ||g||_{p,1} \le B_{p}||g||_{1;p,r}$$

for some B_p independent of F.

Lemma 1 now asserts that

$$\sum (|n|/(1+|n|^2)^{1/2})(1+|n|^2)^{1/2} i \operatorname{sgn} nc_n e^{inx} = \sum |n| i \operatorname{sgn} nc_n e^{inx} = \sum inc_n e^{inx}$$

is the Fourier series of a function $f \in L^p$ and that $(D_p \text{ independent of } F)$,

(3) $||f||_{p} \leq D_{p}||h||_{p} \leq D_{p}B_{p}||g||_{1;p,r} \leq D_{p}B_{p}A_{p}||F||_{1;p,r}.$

The result follows with $C_p = D_p B_p A_p$. Q.E.D.

REFERENCES

- 1. M. H. Taibleson, On the theory of Lipschitz spaces of distributions on euclidean n-space. I. Principle properties, J. Math. Mech. 13 (1964), 407-479.
- 2. ——, Lipschitz classes of functions and distributions in E_n , Bull. Amer. Math. Soc. 69 (1963), 487–493.
- 3. M. Weiss and A. Zygmund, A note on smooth functions, Nederl. Akad. Wetensch. Proc. Ser. A 62 (1959), 52-58.

WASHINGTON UNIVERSITY