- 1632 f. 1964, Presses Académiques Européennes, Bruxelles.
- 3. A. Ghouila-Houri, Caractérisation des matrices totalement unimodulaires, C. R. Acad. Sci. Paris 254 (1962), 1192-1194.
- 4. I. Heller, On linear systems with integralvalued solutions, Pacific J. Math. 7 (1957), 1351-1364.
 - 5. W. Tutte, Matroids and graphs, Trans. Amer. Math. Soc. 90 (1959), 527-552.
- 6. P. Camion, Caractérisation des matrices unimodulaires, Cahiers Centre Études Rech. 5 (1963), no. 4.

EURATOM, ISPRA, ITALY

PRIME RINGS WITH MAXIMAL ANNIHILATOR AND MAXIMAL COMPLEMENT RIGHT IDEALS¹

KWANGIL KOH AND A. C. MEWBORN

- 1. Introduction. Let R be a prime ring with a maximal annihilator right ideal and a maximal complement right ideal. Then there is a division ring D such that either R is isomorphic to a right order in the complete ring of linear transformations of a finite dimensional D-space, or for each positive integer n there is a subring $R^{(n)}$ of R which is isomorphic to a right order in the complete ring of linear transformations of an n-dimensional D-space. This is related to a result of N. Jacobson [2, p. 33] and extends a theorem of A. W. Goldie [1; Theorem [4, 4] that a prime ring with maximum conditions on annihilator right ideals and complement right ideals is a right order in a simple ring with minimum condition on right ideals. R is also isomorphic to a weakly transitive ring of linear transformations of a vector space. This is a generalization of a theorem of R. E. Johnson [4; 3.3].
- 2. We assume throughout that R is a prime ring. The notation R_r^{Δ} (R_l^{Δ}) is used to denote the right (left) singular ideal of R, and L_r^* (L_l^*) is the lattice of closed right (left) ideals of R. An R-module is uniform if each pair of nonzero submodules has nonzero intersection. A right (left) ideal of R is uniform if it is uniform as right (left) R-module. For other definitions and notation see [6].

THEOREM 1. R contains a maximal annihilator right ideal and a maximal complement right ideal if and only if $R_r^{\Delta} = (0)$ and L_r^* is atomic.

Received by the editors July 1, 1964.

¹ The authors wish to thank Professor R. E. Johnson for many helpful comments in revising the original manuscript of this paper.

PROOF. Assume first that R contains a maximal annihilator right ideal x^r , $x \in R$, $x \neq 0$. Suppose $R_r^{\Delta} \neq (0)$. Then $R_r^{\Delta} x \neq (0)$; so there exists $y \in R_r^{\Delta}$ such that $yx \neq 0$. Now $xR \neq (0)$, so $y^r \cap xR \neq (0)$. If $xr \in y^r \cap xR$, $xr \neq 0$, then $r \in (yx)^r$ and $x^r \subset (yx)^r$, $x^r \neq (yx)^r$, a contradiction. Hence $R_r^{\Delta} = (0)$. If R contains a maximal complement C, then a complement A of C is an atom of L_r^* . If $B \in L_r^*$, then $BA \neq (0)$ and $bA \neq (0)$ for some $b \in B$. bA is an atom of L_r^* contained in B. Hence L_r^* is atomic.

Conversely, assume that $R_r^{\Delta} = (0)$ and L_r^* is atomic. Let A be an atom of L_r^* and $a \in A$, $a \neq 0$. Then a^r is a maximal annihilator right ideal and a maximal complement.

LEMMA. Let V be a uniform quasi-injective R-module with zero singular submodule and let $D = \operatorname{Hom}_R(V, V)$. If $v \in V$, then Dv has nonzero intersection with each nonzero submodule if and only if there is a nonzero element $r \in R$ such that $r \cdot v^r = (0)$.

PROOF. Let $v^{rl} = \{r \in \mathbb{R}: r \cdot v^r = (0)\}$ and suppose $v^{rl} \neq (0)$. Let V_1 be a nonzero submodule of V. Let $w \in V_1$, $w \neq 0$. Then $w \cdot v^{rl} \neq (0)$. Let $r \in v^{rl}$, $wr \neq 0$. Then $v^r \subseteq r^r \subseteq (wr)^r$. By [6, 2.2], v and wr generate the same 1-dimensional D-subspace of V. Hence $Dv \cap V_1 \neq (0)$.

Conversely, suppose that Dv has nonzero intersection with each nonzero submodule of V. There is a nonzero right ideal I of R such that $v^r \cap I = (0)$. $vI \cap Dv \neq (0)$. Let $i \in I$, $d \in D$ be such that $vi = dv \neq 0$. Then $v^r = (dv)^r = (vi)^r = i^r$. Thus $i \in v^{rl}$ and $v^{rl} \neq (0)$.

THEOREM 2. Let R be a prime ring for which $R_r^{\Delta} = (0)$ and L_r^* is atomic. Then there is a division ring D such that (1) R is a right order in the ring of all linear transformations of a finite dimensional D-space, or (2) for each positive integer n there is a subring $R^{(n)}$ of R such that $R^{(n)}$ is a right order in the ring of all linear transformations of an n-dimensional D-space.

PROOF. The maximal right quotient ring R' of R is primitive with minimal right ideal I'. We first show that I' is a quasi-injective R-module. Let U be a nonzero R-submodule of I' and suppose α is a nonzero homomorphism of U into I'. Let $u \in U$ such that $\alpha(u) \neq 0$. $R_r^{\Delta} = (0)$ because $R_r^{\Delta} = (0)$. Thus there is a nonzero right ideal J' of R' such that $\{r' \in R' : ur' = 0\} \cap J' = (0)$. Define $\tilde{\alpha}$ on I' = uJ' by: $\tilde{\alpha}(ur') = \alpha(u)r'$, $r' \in J'$. $\tilde{\alpha} \in \operatorname{Hom}_R(I', I')$. Suppose $v \in U$, v = ur', $r' \in J'$. Then $K = \{r \in R : r'r \in R\}$ is a large right ideal of R. If $r \in K$, then $\alpha(v)r = \alpha(vr) = \alpha(ur'r) = \alpha(u)r'r$; hence $r \in (\alpha(v) - \alpha(u)r')^r$. Since

^{*} This fact is a consequence of the following unpublished result of R. E. Johnson: If $R_r^{\Delta} = (0)$ and $R \subset S \subset R'$, and if M is a quasi-injective S-module, then M is a quasi-injective R-module.

K is large and $R_r^{\Delta} = (0)$, we conclude $\alpha(v) = \alpha(u)r' = \tilde{\alpha}(ur') = \tilde{\alpha}(v)$. This proves that $\tilde{\alpha}$ is an extension of α , and we conclude that I' is a quasi-injective R-module.

Now, let $I = I' \cap R$. I is a uniform R-module with zero singular submodule. Let $D = \operatorname{Hom}_R(I', I') = \operatorname{Hom}_{R'}(I', I')$. Then D is a division ring and V = DI is a minimal quasi-injective extension of I. $D = \operatorname{Hom}_R(V, V)$. Let B be a basis for V as (left) vector space over D. If B is finite, then L_r^* is finite dimensional [6, 3.1]. Hence, in this case, R is a right order in a simple ring with minimum condition on right ideals [1, 4.4].

Suppose B is not finite and let n be a positive integer. Let V_1 be the subspace of V spanned by a subset $\{v_i\}_{i=1}^n$ of B. Choose $e \in R'$ such that ve = v, each $v \in V_1$, and such that e has rank n as linear transformation of V. Let $R^{(n)} = \{r \in R \cap eR' : V_1 r \subseteq V_1\}$. $R^{(n)}$ is a subring of R isomorphic to a subring of the full ring Q of linear transformations of V_1 . We show that $R^{(n)}$ is a right order in Q. Let $q \in Q$ of rank $k \ge 1$. Let $\{w_i\}_{i=1}^n$ be a basis for V_1 , and if k < n we assume that this basis is chosen so that $\{w_i\}_{i=k+1}^n$ is a basis for the null space of q. Let $\{u_i\}_{i=1}^n$ be a basis for V_1 chosen so that $u_i = w_i q$, $1 \le i \le k$. If $J_i = \bigcap_{j \ne i} w_j^r$ and $K_i = \bigcap_{j \neq i} u_j^r$, then $w_i J_i \neq (0)$ and $u_i K_i \neq (0)$, $1 \leq i \leq n$, by [6, 2.2]. Let $r_i \in J_i$ and $s_i \in K_i$ such that $w_i r_i \neq 0$, $u_i s_i \neq 0$, $1 \leq i \leq n$. Then $T = \{r \in R : er_i r \in R, es_i r \in R, 1 \le i \le n\}$ is a large right ideal of R. By the Lemma and the fact that $R_r^{\Delta} = (0)$, $w_i r_i T \cap u_i s_i T \cap D v_i \neq (0)$. Let $a_i \in T$, $b_i \in T$ such that $w_i r_i a_i = u_i s_i b_i$ is a nonzero element of Dv_i . If $r = \sum_{j=1}^k r_j a_j$ and $s = \sum_{j=1}^n s_j b_j$, then er and es are in $R^{(n)}$ and $w_i qes$ $= w_i er$, $1 \le i \le n$. Moreover, es is nonsingular on V_1 . This proves that $R^{(n)}$ is a right order in Q.

COROLLARY. R contains a subring which is a right order in a division ring.

THEOREM 3. Let R be a prime ring such that $R_r^{\Delta} = (0)$ and L_r^* is atomic. Let U be an atom of L_r^* and V the minimal quasi-injective extension of U as right R-module. If $D = \operatorname{Hom}_R(V, V)$ there exists a subring K of R which is a right order in D and such that if $\{v_i\}_{i=1}^n$ is a finite D-linearly independent subset of U and $\{y_i\}_{i=1}^n$ is a sequence in U, then there exists $r \in R$ and $k \in K$, $k \neq 0$, such that $v_i r = ky_i$, $1 \leq i \leq n$.

PROOF. Let R', I', and V be chosen as in the proof of Theorem 2. There exists $u \in U$ such that $u^r \cap I' = (0)$. Then uI' = I'. Let $e \in I'$ be such that ue = u. Then $e^2 = e$ and eR'e is a division ring isomorphic to P. Let $P' \in P$, and let $P' \in P$ and $P' \in P$ is a left ideal of P and $P' \in P$ and $P' \in P$. Let

d=er'e, $r'\in R'$, $d\neq 0$. Then $dU\cap U\neq (0)$. Let $I=\{u\in U:du\in U\}$. Then $I\neq (0)$ and $I\cap L\neq (0)$. If $k_1\in I\cap L$, $k_1\neq 0$, then $dk_1\in K$. This proves that K is a right order in eR'e.

Let $\{v_i\}_{i=1}^n$ be a finite *D*-linearly independent subset of *U* and $\{y_i\}_{i=1}^n$ a sequence in *U*. For $1 \le i \le n$, let $J_i = \bigcap_{j \ne i} v_j^r$. By [6, 2.2] $v_i J_i \ne (0)$. Let $k \in K$, $k \ne 0$. Then $v_i J_i k \ne (0)$. Select $b_i \in J_i$ such that $v_i b_i k \ne 0$. Then $v_i b_i k \in K$ and $\bigcap_{i=1}^n (v_i b_i k) k \ne (0)$. Hence $v_i b_i k k = k \ne 0$, $1 \le i \le n$, for some k_i , k in K. If $r = \sum_{i=1}^n b_i k k_i y_i$, then $v_i r = k y_i$, $1 \le i \le n$. The theorem is proved.

Suppose now that we also assume in Theorem 3 that $R_i^{\Delta} = (0)$ and L_i^* is atomic. Then we can show that K, (and hence L) is also left uniform. For assume K_1 and K_2 are nonzero left ideals of K and that $K_1 \cap K_2 = (0)$. If $k \in K$, $k \neq 0$, then $K_1 k \cap K_2 k = (0)$. But $(Lk)^*$ is an atom of L_i^* by [4, 1.1]. If $0 \neq k_1 \in K_1$ and $0 \neq k_2 \in K_2$, then $Lk_1k \cap Lk_2k \neq (0)$. Suppose $l_1k_1k = l_2k_2k \neq 0$. Let $k' \in U$ such that $k'l_1k_1k = k'l_2k_2k \neq 0$. Then $k'l_1k_1 \in K_1$ and $k'l_2k_2 \in K_2$, and so $K_1k \cap K_2k \neq (0)$, a contradiction. Clearly L is uniform. Since K is left uniform it is a left order in D. This implies that a K-linearly independent subset of U is also D-linearly independent. This shows that [4, 3.3] is a consequence of Theorem 3.

BIBLIOGRAPHY

- 1. A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math-Soc. 10 (1960), 201-220.
- 2. N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ. Vol. 37, Amer. Math Soc., Providence, R. I., 1956.
- 3. R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891-895.
- 4. ——, Representations of prime rings, Trans. Amer. Math. Soc. 74 (1953), 351-357.
- 5. ——, Quotient rings of rings with zero singular ideal, Pacific. J. Math. 11 (1961), 1385-1392.
- 6. R. E. Johnson and E. T. Wong, Quasi-injective modules and irreducible rings, J. London Math. Soc. 36 (1961), 260-268.

University of North Carolina