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The purpose of this note is to prove a theorem which establishes a

connection between results of [l] and [2]. Recall that for any R-

module M, the "dual" M* = WomR(M, R) has a natural structure

as a module of the opposite hand from M, induced by the bi-module

character of R.

Theorem. For any ring R, if (a¡) : every R-operator homomorphism

between minimal left ideals of R is given by a right multiplication, then

(hi) : the dual of every simple left R-module is simple or zero. Conversely,

condition (b¡) implies condition (a¡), provided that for every minimal

left ideal L of R, the set (L)° of elements of R which annihilate L on the

right is j£R.

The same relationship exists between the analogous conditions (ar) and

(hr) for right ideals and right modules.

In [2, Propositions 1 and 3, pp. 204 and 206], Ikeda proved: If A

is an algebra of finite rank containing a left identity [a ring with mini-

mum condition on left and right ideals], then A is quasi-Frobenius if

and only if A satisfies (a¡) [both (a¡) and (ar)]. In [l, (3.4) and (4.1),
pp. 349 and 350], Dieudonné proved results which are identical in

statement to those of [2], cited above in italics, with conditions (a¡)

and (ar) replaced by conditions (b¡) and (br), respectively except

that he assumed that A had an identity. Our theorem allows immedi-

ate passage from Ikeda's results to those of Dieudonné. Used to-

gether with Lemma 1 of [2, p. 204], it also allows the reverse pas-

sage.

Proof of the Theorem. (=>) If 5 is a simple left i?-module such

that 5*^0, S is isomorphic to some minimal left ideal L of R and

hence S*^L*. Let O^fEL*; then f~l:f(L)-+L exists and is a homo-
morphism between minimal left ideals of R. Consequently, there

exists an element rER such that/r = i (the identity map on L). For

any f'EL*, there is an r'ER such that /' =ir' and hence f' = ir'

= (fr)r'=f(rr').
(<=) Let L he any minimal left ideal of R; then L*9á0 since i be-

longs to L* and hence L* is simple. Since (LY^R there exists an ele-

ment rER such that irj^-0 and hence iR = L*.
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Remarks. (1) It is easy to construct examples of rings which

satisfy condition (bj) but not condition (aj).

(2) Any ring which satisfies condition (aj) and contains a minimal

left ideal must have (L)°^R for every minimal left ideal.

The author wishes to thank Professors B. Vinograde and T. J.

Head for their help in organizing this note.
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1. Introduction. The Picard group T is important in the Theory

of Automorphic Functions [3]. It consists of all linear transforma-

tions

az + b
(1.1) w=-—,        ad-bc=±l

cz + d

with coefficients Gaussian integers. T is known  [3] to have four

generators

(1.2) s, t, u,v

together with the eight defining relations

(1.3) s2 = w2 = v2 = (mí-1)2 = (vf1)2 = (sr1)2 = (utr1)3 = (ht1)' = 1.

The  generators   (1.2)   are  the  transformations  w=—z,  w = z — l,

w= — 1/z, and w= —z+i respectively.

In this paper, we seek to examine the structure of the Picard

group by studying its subgroups. The modular group is a well-known

subgroup. It consists of all transformations (1.1) with coefficients
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