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A NOTE ON THE HAUSDORFF MOMENT PROBLEM

C. W. LEININGER

In [l, pp. 630-635], J. H. Wells presented a solution of the Haus-

dorff moment problem for the case of a quasicontinuous mass func-

tion. The purpose of this note is to extend that result to include

Riemann-integrable mass functions.

If {d„] is a number sequence, let Anp= Q)An-pdp, n^p, p = 0, 1,

2, • • • . We observe that [l, p. 634, Theorem 2.4(ii)(b)] may be

stated as follows:

If e>0, there is a finite collection Cof nonoverlapping subsegments

(m, i;) of the segment (0, 1) such that J^e (v — u) = l and if u<y<z

< v,  then   there  is  a  positive  integer  N  such   that  if  n > N,

|   /  .Btt^BSng-^ncT*  / .nu<T,<na sinn]   ^ €.

The arguments used to establish [l, p. 634, Theorem 2.4] and the

associated theorems and lemmas [l, pp. 630-633] are readily modi-

fied to supply a proof of the following theorem.

Theorem. If {dn} is a number sequence, the following two statements

are equivalent:

(i) There is a function g Riemann-integrable on [0, 1 ] such that

dn = f[o.i]I"dg, m = 0, 1, 2, • • • ;
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(ii) (a) there is a number M such that | ££_0-<4np| <M, O^k^n,

« = 0, 1, 2, • • • , and

(h) if « > 0 and 0 < 5 < 1, there is a finite collection C of nonoverlap-

ping sub segments (u, v) of the segment (0, 1) such that £<? (v—u)

> 1 — S and if u<y<z <v, then there is a positive integer N such that if

n>N,

/ •     Anp ~t       ¿-j     Anp
ny<psnt nyzpKnz

<e.

The crux of the matter lies in the observation that [l, p. 633,

Lemma 2.3] holds if the mass function is Riemann-integrable on

[O, 1 ], and1 in noticing the following Ascoli-type result (compare with

[l, p. 630, Theorem 2.1]):

Lemma. Suppose {/„} is a uniformly bounded infinite sequence of

real functions from [O, 1 ] and if e > 0 and 0 < 8 < 1, there is a finite col-

lection C of nonoverlapping subsegments (u, v) of the segment (0, 1) such

that £c (0—m) > 1 — 8 and if u<y<z<v, then there is a positive inte-

ger N such that if n>N,

|/n(y)-/n(2)|    <«,

and {gn} is an infinite subsequence of {/„} which converges at each point

of a countable set which is dense in [O, 1]. If, for each x in [O, 1], h(x)

is a cluster point of {gn(x)}, then on [O, 1] h is Riemann-integrable

and {g„} converges almost everywhere to h.
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1 The author is indebted to the referee for suggesting that the lemma be stated in

the paper.


