INVERTIBLE SOLUTIONS TO THE OPERATOR
EQUATION TA—-BT=C
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1. Introduction. Let 4, B and C be endomorphisms of the Banach
space X. Consider bounded solutions to the operator equation

(1) TA — BT = C.

If X is finite-dimensional, it is well known that for any C, a unique
solution T of (1) exists provided that the eigenvalues of 4 are distinct
from the eigenvalues of B [1]. An extension of this result has been
given by Rosenblum [2]. For an arbitrary Banach space the operator
equation (1) possesses a unique solution T provided that the spec-
trum of 4 is disjoint from the spectrum of B.

Certain results concerning the invertibility of T are available in the
special case where X is finite-dimensional and (1) is replaced by

2) TA+AT=C

where A is a stability matrix (all of its eigenvalues have negative
real parts), and 4’ denotes the transpose of the matrix 4. If Cis a
symmetric, negative definite matrix, it is well known [3] that the
solution T of (2) is positive definite. Recently Kalman [4] has shown
that if C is a symmetric dyad, C= —cc/, the solution T of (2) is
positive definite provided the vectors ¢, Ac, A%, - - -, A* ', are
linearly independent.

In this note, Kalman'’s result is generalized to apply to equation
(1) when C is an operator with one-dimensional range. Necessary and
sufficient conditions are given which guarantee that the unique solu-
tion T has nullspace equal to the null vector and range dense in X.
Unlike the methods used in [4] which rely on finite-dimensionality
through use of canonical forms, the methods used here apply in an
arbitrary Banach space.

2. Definitions and notation. The dual space of X is denoted by X*.
The null vectors in X and X* are denoted by 0 and 0* respectively.
Corresponding to a subspace V of X is the subspace V* of X* which
consists of all elements x*EX* such that x*(v) =0 for each v&E V.
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The adjoint of an endomorphism 4 is denoted by A*. The range
and nullspace of A are denoted by ®(4) and 91(4) respectively. The
resolvent set p(4) of A4 is the set of complex numbers A such that
(A —A4)! exists as an endomorphism of X. The spectrum of 4, ¢(4),
is the complement of the resolvent set in the complex plane.

3. Invertible solutions. The results of this section characterize the
invertible solutions of equation (1). The characterization is in terms
of the conditions of Theorem 1 together with the requirement that
the range of T be closed.

Rosenblum [2] provides an explicit representation for the solution
T of (1).

LEMMA. If o(A) and o(B) are disjoint sets, then (1) has the unique
solution

3) r- L (\ — B)-IC(A — A)~1d\

27t J (D)
where D is a Cauchy domain such that 6(A) CD and o(B)YND= (.
ProoF. See Rosenblum [2, Theorem 3.1].

THEOREM 1. Suppose that a(A) and a(B) are disjoint sets and that
C has a one-dimensional range. Then the unique solution T of (1) has
nullspace equal to the null vector and range dense in X, if and only if

(i) the largest A-invariant subspace of X contained in the nullspace
of C is the space consisting of 0 alone, and

(ii) the smallest B-invariant closed subspace of X containing the
range of C is X.

Proor. The representation (3) for T shows immediately that any
A-invariant subspace of X which is contained in the nullspace of C
is also contained in the nullspace of T. Hence condition (i) is cer-
tainly a mecessary condition.

Condition (ii) is equivalent to:

(i)’ The largest B*-invariant subspace of X* contained in the
nullspace of C* is the space consisting of 6* alone.

The equivalence of (i) and (ii)’ follows from the relation ®(C)*
=9(C*) and the fact that if W is a B-invariant subspace in X, Wt
is a B*-invariant subspace in X*.

If T satisfies (1) on X then T* satisfies

(4) A¥T* — T*B* = C*

on X*. T has nullspace equal to the null vector and the closure of its
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range equal to X if and only if the same is true of T*. Hence, the
argument above which shows that condition (i) is necessary may be
applied to equation (4) to show that condition (ii)’ is necessary.
Hence, by the equivalence of (ii) and (ii)’, (ii) is a necessary condi-
tion.

To conclude the proof, it must be shown that if either the nullspace
of T is not {0} or the closure of the range of T'is not X either condi-
tion (i) or (ii) is unsatisfied. Suppose the nullspace of T is not {0}
Let x50 belong to the nullspace of 7. Then TAx = Cx. Either Cx0
or Ax€9(T). The second alternative together with equation (1)
implies that TA2x=CAx. This last equation implies that either
CAx#0 or AxEN(T). Continuation in this manner, by induction,
leads to the conclusion: either there exists an x,E91(7) such that
Cxo7#0 or, for all positive integers n, A"x& (C).

If A»x€9(C) for all n, the A-invariant subspace {x, Ax, - - -,
Arx - - - } violates condition (i).

If there exists an xo € 9(T) with Cxo70, the Fredholm alternative
and (1) imply that 91(4A*T*) is perpendicular to Cx,. Since ®(C) is
one-dimensional, 9(4*T*) is perpendicular to ®(C). Hence, if
x*CN(A*T*), then x*CSN(C*). Equation (4) on X* then implies
that T*B*x* =0* which in turn implies that (4*T*) B*x* =0*. Hence,
the nullspace of A*T* is B*-invariant, and the nullspace of C* con-
tains the nullspace of A*T*. This violates condition (ii)’.

Suppose that the closure of the range of T is not X. This implies
that the nullspace of T* is not {*}. It is clear that (4) on X* satis-
fies the hypotheses of the theorem so that arguments similar to those
above applied to (4) show that if the nullspace of 7* is not {8*}, con-
dition (i) or (ii) must be violated. This concludes the proof of the
theorem.

If X is n-dimensional and 4, B, and C are X7 matrices, then C
may be represented in the form C=ba’ where b is a column vector
and &’ is a row vector. In this case, Theorem 1 becomes

THEOREM 2. Suppose the eigenvalues of A are distinct from the eigen-
values of B. Then the unique solution T of the equation TA —BT =ba’
1s invertible if and only if

(1) the (row vectors) a’, a’A4, - - - , a’A™! are linearly independent,
and

(i) the (column vectors) b, Bb, - - -, B*'b are linearly inde-
pendent.

Proor. For n-dimensional X, conditions (i) and (ii) are equivalent
to conditions (i)’ and (ii)”’, and clearly the range of T is closed.
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