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1. Introduction. By a snake-like continuum we mean a compact

metric chainable continuum. In [2], Mioduszowski discusses snake-

like continua and calls a pseudo-arc the universal snake-like con-

tinuum since, as proved in [2], every snake-like continuum is a con-

tinuous image of a pseudo-arc. This usage of "universal" is at vari-

ance with the homeomorphic imbedding usage of universal and thus

the question arises: Is there a universal snake-like continuum X in

the sense that every snake-like continuum can be imbedded in X?

In this paper we construct such a universal snake-like continuum.

This construction is based on the well-known theorem that X is

snake-like if and only if X is the limit of an inverse sequence of arcs.

2. The construction. Let I denote the closed unit interval with the

usual topology and let C(T) he the space of all continuous functions

from / into I with the topology of uniform convergence. C(T) is a

separable metric space and thus there exists a countable dense subset

{ux, Ui, • ■ - } oí C(T).

If » is a positive integer, let /„ denote I and for each n greater than

one we construct a continuous function g„ : 7„—*F„-i. The limit U of

the resulting inverse sequence (/,-, gt) will be a universal snake-like

continuum.

Let w0:1—*I be the identity function and if i is an integer, define

E(i) such that E(i) =i/2 if i is even, and E(i) = (i —1)/2 if * is odd.
If «2:2 and i is an integer such that 0^i<2n~1, let

(*) gn(x) = 22~"E(i) + 21-"M(n_1)[imod 2] (2"x - 2Î)

for all x in [2*2"", (2*+1)2-"]. If 0<»<2*-1, let

g»(2t2-») - gn((2t - 1)2-»)

(">   «-W-        2i2--(2i-l)2-       (*-**-> + ^->

for x in [(2i-l)2-B, 2i2~n], and suppose gn(x) = gn((2n-i)2~n) for *

in [(2"-1)2-», 1].
Thus, we have divided /„ into 2" equal subintervals and by (*) we

have defined a continuous function g„ on the odd subintervals. The
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endpoints of the even subintervals have been defined and thus, by

(**), we make linear extensions of gn to the even subintervals. Hence,

gn is a continuous function from I„ into 2n_i.

Hence, for all i greater than one we have defined a continuous

function g<: Ii—>Ii-i. Let (2<, gi) be the corresponding inverse se-

quence of arcs and hence the limit space U is a snake-like continuum.

Theorem. U contains a homeomorphic copy of every snake-like con-

tinuum.

Proof. Let X be a snake-like continuum and let (I,, /<) be an in-

verse sequence of arcs whose limit is X. Theorem 3 of Morton Brown's

paper [l] essentially says that if we approximate each of the func-

tions fi close enough, then we still obtain X as the limit. Since

{«i, Ui, - - ■ } is a dense subset of C(I), the u¡ can be used to approxi-

mate the/< and thus, with the aid of [l], it follows that there exists

an increasing sequence (w2, »3, • - - ) of positive integers such that

(1) u,.( approximates/¿ and (2) X is homeomorphic to the limit F of

the inverse sequence (Ii, »„,.). It is clear that there is a sequence

(«2, »3, • • • ) such that if 4^2 then »< + l <»¿+i.

We now show that there exists a subspace of U homeomorphic to

F and thus to X. Let Ji denote the subinterval [0, 1/2] of Iu let

«i = 0, and Ei=2 2-n) = 0. If k = 2, 3, •• -, let J* be the subinterval

i E 2-"',  E 2-"> + 2-«*-1] of Int+i.
L j—i y=2 J

Also define wk: Jk—»2njt_1+i such that

Wk = gnt-i+i O •   ■  • O gnk+l | Jk-

For instance, if »2 = 1 and »3 = 3, then /2 and J3 are the respective

subintervals [1/2, 3/4] and [10/16, 11/16] of 22 and I«. Thus,
Wi = gi\ Ji is the compressed Wi and wi = g3gi\ J% is the compressed u3

followed by the compressed identity.

Lemma. wk(x) = E*-¡ 2-n;+2-n*-i-1Mnjfc(2n*+1x-2n*+1Eí=2 2_ny)-

The proof of the lemma follows the proof of the theorem.

Thus we see that wk is essentially u„t and furthermore, that

wk[jk]QJk-i. Hence, we have defined the inverse sequence (/,-, w<)

and will prove that its limit, W, is homeomorphic to Y. Clearly W

is a subset of U. If k = l, 2, • • ■ , define the homeomorphism qk: Jk

—*Ik as follows:
k

qk(x) = 2nt+1x - 2nk+1 E 2_"'-

J=2
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By straightforward calculations, we see that the diagram

Wi wk
Jl <— J2 <— • • • <— Jk_l <— Jk <— • • •

Î1 02 \qk-i        \qk

T        U"*       T                                                              T                 M"1     T
Il   <- h   <-   •    •    •   <- Ik-1   <- /*   <~

is commutative. That is, if k = 2, 3, • • • , then qk-iwk = u„kqk. There-

fore we have a mapping (qî): (/,-, w,)—>(/,-, unj which induces a

homeomorphism q: W-+Y. Hence, we have a subspace W oí U that

is homeomorphic with the snake-like continuum X and thus U is a

snake-like continuum that contains a homeomorphic copy of every

snake-like continuum.

Proof of the lemma. If ¿ = 2n*E*-2 2_"i = (E*-2 2»*-"») + l, then

i is an odd integer since nk—«y>0 where/ = 1, • • • , k — 1. Thus,

/* = [2Í2-W-1, (2i + 1)2-»*-1]

and

J    Jfc-l k—X

E(i) = — E 2"*-"'- = 2"*-1 E 2-"'
2    ;=2 J=2

and hence, by the definition of g„t+i,

¡fe-l / k \

gnk+i I Jk = E 2-"' + 2-»*m„ J 2-*+»* - 2"*+1 E 2-"') •
3=2 \ y-2        /

With similar calculations including an inductive step, we show that

if 0^p^nk — nk-i — 2, then

gnk-P O •   •  • O g„t+l I Jk

k-X / k \

= ¿^ 2~"' + 2-»*+*+iMni ( 2"*+1a; - 2»*+» E 2-"') •
y-2 \ j-2        /

In particular, it is true for p = nk — w*-i — 2, and thus

*-i / * \
*»*(*) = E 2_ni + 2-'*-i-1Mni I 2"*+^ - 2»*+1 E 2—' I •

y-2 \ 3-2        /

Corollary. // X is any snake-like continuum, then U contains c

mutually disjoint homeomorphic copies of X.

Proof. Just as there are c distinct subsequences of the positive

integers, there are c ways of choosing the sequence (n2, n3, ■ ■ • ) in
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the proof of Theorem 1. The result follows since distinct subsequences

yield disjoint subspaces of W.

Added in proof. With a slight modification U can also be universal

in the Mioduszowski continuous image sense. The point (0, 0, • • • )

of U determined by the inverse limit representation is an endpoint

and thus we can add a pseudo-arc P such that PU U is snake-like.

If X is any snake-like continuum, let / map P onto X by [2] and

extend/ to PU U by collapsing U to the appropriate point.
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A NOTE ON COUNTABLY PARACOMPACT
SPACES AND METRIZATION

C. E. AULL

As defined by Dowker [l], a topological space (X, 3) is called

countably paracompact if every countable open cover of X has an

open locally finite refinement. It is known that every metrizable

topological space is paracompact and hence countably paracompact.

It is proposed to show that in the usual metrization theorem for

topological spaces [3, p. 127], the T3 condition may be replaced by

the combination P2 and countably paracompactness. We will need

the following lemma.

Lemma. Every countably paracompact, first countable P2 space is T3.

Proof. Designate the topological space by (X, 3) as in Kelley [3].

Let P be a proper closed set of X. For xQF, and yQF there exists

disjoint open set U^ and Uv containing x and y respectively. There

exists a countable base at x, {Vk}, k = l, 2, ■ ■ • , »,•■•. Let

Wt = \J{Uy:U?DVu}. WkC\Vk = 0 and {Wk} forms a countable

cover of P. Since P is closed, {Wk} may be replaced by an open

locally finite refinement, { Ta: aQA } where A is an index set.
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