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1. Introduction. If X is a topological space, a path field on X is a

map s: X—rX1 such that s(x) is either a path beginning at x and never

hitting its initial point again or s(x) is the constant path at x. The

path field 5 is nonsingular if s(x) is never constant. This concept gen-

eralizes the notion of vector field on a differentiable manifold. In [4]

it was shown that a compact, connected, orientable, topological mani-

fold (without boundary) admits a nonsingular path field if, and only

if, its Euler characteristic is zero. Our objective here is to prove

this theorem without the assumption of orientability and, in addition,

for compact manifolds with boundary.

2. The Lefschetz formula. Let X denote an ANR (compact metric)

and/: X—*X a given map. Then, F. Browder [2] and also Leray and

Deleanu [12], [6] have developed a local index theory which assigns

to every open set OEX, such that/ has no fixed points on its bound-

ary dO, an integer i(f, 0) called the index of / on 0. This index func-

tion has very nice properties listed explicitly in [2, p. 256]. Inciden-

tally, the theory only requires / to be defined on 0, the closure of 0,

i.e.,/:Ö->X.
Suppose we add the assumption that / has an isolated fixed point

Xo and X is locally Euclidean at x0, i.e., there is an open set U, con-

taining Xo, homeomorphic to Euclidean «-space Rn. Then, there is an

index I/(x0) for/ at x0 defined in terms of local degree ([13], [lS]).

Proposition (2.1). If O is any open set in X containing x0, then for

O sufficiently small,

i(f,0) - (-l)»/,(*o).

Proof. Let h: Rn—*U denote a homeomorphism such that A(0)

= x0. Let C denote the closed unit ball in Rn, C its interior, and

V = h(C°) C U. We may assume that V contains no fixed points of /

other than x0. We will show that if 0 is any open set containing Xo

such that ÖU/(Ö)CF, then i(f, 0) = (-l)"//(*o). Let Oi = h~l(0)
EC". A-1/: 0-+C has the property that h(h~lf) =/has no fixed points

on dO. Therefore, by the Commutative Property of i [2]
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¿((/r1/)*, Oi) = ¿(Â(Â-y), O) = i(J, O).

Let g = A_1/A: Or-*C. If G: C—>C is any extension of g, then 4-(/, 0)
= i(G, Oi). Since C is a polyhedron, 4-(G, Oi) is the local index re-

stricted to the category of polyhedra and continuous maps. But,

O'Neill [l3] has shown that a local index function satisfying ap-

propriate conditions (satisfied by the Browder-Leray-Deleanu index)

is unique on this category of polyhedra. His uniqueness proof shows,

in fact, that i(G, Oi) = (-1)"7G(0). But by definition, If(x0)=Ia(0).
Therefore, i(f, O) = (-l)nIf(x0).

Proposition (2.2) (The Lefschetz formula). Let X denote an

ANR (compact metric), f: X—>X a given map with a finite number of

fixed points, xi, • • • , xr. If each xjt 1 ¿j ¿ r, possesses an open neighbor-

hood Uj homeomorphic to Pn(,), then

A(/) =¿(-l)n0'7/(*J),
i-i

where A(f) is the Lefschetz number of f.

Proof. Choose sufficiently small, mutually disjoint open sets Ge-

such that XjQOj and i(f, 0,) «»(—l)n(0J/(x/). Then, the whole space
X is an open set and X — Uj-i 03 has no fixed points of/. Therefore,

by the Additivity Property [2 ] of the index i,

i(f, X) = t i(f, Oi).
i-l

But the Normalization Property [2] tells us that i(f, X) =A(/), the

Lefschetz number of /. Thus,

A(/) = i(f, *) = £ i(f, Of) = JZ (-lY^If(x¡).
i-i i-l

Corollary (2.3). Let M denote a compact topological n-manifold

with a finite number of fixed points xi, ■ • • , xT. Then

A(/) = (-D" £//(*/)•
y-i

If M is a compact topological manifold with boundary B, the result is

still valid provided the fixed points xt, • • • , xT, do not belong to B.

Remark (2.4). Proposition (2.2) generalizes the form of the Lef-

schetz formula proved in [5], as well as Theorem 3 in [15].
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3. A basic theorem. We recall first [7] that if ? = (£, p, B),

iFo = (£o, po, B) are regular fiber spaces, in the sense of Hurewicz

[lO] over the same base B, then (ï, ïo) = (E, Ea, p, B) is a fibered pair

provided E0EE, po = p\E0 and ï admits a lifting functionX such that

X lifts paths in B into E0 if the preassigned initial point is in E0.

(F, Fo) = (p~1(b), pQ\b)), bEB, is the fiber of (î, ff0). A generalized
«-plane bundle (n-gpb) [7] is a fibered pair (ï, ïo) with fiber (F, F0)

such that

(i) there exists a cross section a: B—rE such that E0 = E—a(B),

(ii)  (F, Fo)~(R», R»-0).
If s:B—rE is a cross section, bEB is called a singular point of s if

s(b)(£Eo. Our objective here is the following.

Theorem (3.1). Let (i, £F0) = (E~, E0, p, M) denote an w-gpb, n^2>

with fiber (F, F0) and base M, where M is a compact connected topologi-

cal n-manifold with boundary B. Suppose s0: B—*E0 is a given partial

cross section (without singularities). Then, there is a cross section s: M

—+E with at most one singularity, which extends j0-

Proof. The simpler case B=0 is given in [4] and we therefore

assume Bt£0.
I. First we observe that by [3] the boundary B is "collared," i.e.,

there is an imbedding h: BX[0, i]-+M such that h(b, 0) =b, bEM.
Let A=h(BX[0, l]), A° = h(BX [O, 1)). Choose an open cover x (all

coverings are considered finite) of M so fine that if UEx and UC\B

9^0, then the star of U (rel x) is contained in A0. Since M is an

ANR (compact metric), and hence LC* [ll], there are open covers

cto>ßo>X («o refines ßa, ßo refines x) such that if a>a0 and Na is the

geometric nerve of a, there are maps

Nah M
Pa

with the following properties.

(a) çapa~xl.

(b) If xEM, pa(x)E\Vi„ ■ ■ ■ , Vik\, where F,-„ • • • , Vik are all
the open sets in a containing x, and | F,0, • • • , F<t| is the ¿-simplex

determined by the "vertices" Ftj..

(c) If FGA^a, is a "vertex," qa(V)EV and for any simplex t of

Na, <Z«(r) belongs to some member of j30.

Since M has dimension n, we may choose a so that K = Na is an

»-complex, a>aB. Let L denote the following subcomplex of K. L is

the union of all closed stars of vertices VEot such that VC\B^0.
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Let/=ga, g=pa, where qa, pa are chosen to satisfy (a), (b), and (c).

Then

(1) K¿M,
g

(2) /f~*l,

(3) f(L) Q A",

(A)                                           g(B) Q L.

II. We now show that the given cross section s0: B—>P0 can be ex-

tended to si: A—>P0. This is done by applying the following simple

lemma.

Lemma (3.2). 7/ 5 = (P0, po, A) is a regular fiber space and BQA is

a strong deformation retract of A, then a partial cross section i0: P—»Po

4*s always extendable to a cross section Si: A—*Eo.

III. The map/: K-*M induces an «-gpb(;r*f tf) = (P*, E*, p*, K)
over K with fiber (F, F0) using the given fibered pair (SF, SFo) over M.

Since f(L)QA, the partial cross section si: A-^E0 induces a cross

section s*:L-+E*. Since 7r¿(F0) = 0 for i<n — 1, s* has an extension

5*: P[n-11WP—>P*. If <rn is an «-simplex of K — L, a simple argument

extends s* to an where s* takes on values in P* except at the bary-

center of o-n. Thus we obtain a cross section s*: K—rE such that s*

has only a finite number of singularities yi, • • • , yr, each the bary-

center of a »-simplex of K—L.

IV. As is usual with induced fibrations, there is an associated com-

mutative diagram

E*í> E

K^M

where J(E*) QE0. Let us investigate the map d>=Js*g. First, we re-

mark that q> is not a cross section, in fact, P4> = pjs*g =fp*s*g =fg~xl.

Let H: MXI^>M denote a homotopy with the following properties.

If Ë: M-^fM1 is the corresponding map into the space of paths then,

(i) for xQM, H(x) begins at fg(x) and ends at x,

(ii) forx£P, H(x)QAI.

Now, if X is a regular lifting function for (ï, Uro), define a cross section

$: M->E hy

*(x) = \[<b(x), H(x)](l), xQM.
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Thus, d) can be "pulled over" to a cross section \p with the property

that if 4>(x) EEo, then \p(x) ££0, xEM. Let \¡/0 =\p\ B : B-*E0. We wish
to show that s0 and ^o are homotopic as cross sections into E0. If

xEB, 4>(x) =fs*g(x) =fs*g(x) =Sifg(x). Thus, SiH(x) is a path in £0

beginning at <p(x) and ending at Si(x) =s0(x). \[d>(x), H(x)] is a path

in jEo beginning at d)(x) and ending at ipo(x). Both of these paths lie

over H(x). Applying Proposition 1 of [8], we obtain So-^o: B—>E0

as cross sections. We note, at this point, the singularities of \(/. Let

Qi = g~l(y¡), where yi, • • • , yr are the singularities of 5* (III). The

sets Qj are closed, mutually disjoint, and none of them intersect the

boundary B. Furthermore, the initial cover x may be chosen so that

each set Q¡ is a compact subset of a Euclidean neighborhood which

does not intersect the boundary. Thus, if Q = UQj, we see that the

singularities of \p lie in Q.

V. Now, using the techniques in the proof of Theorem 1.10 [4],

there is a cross section f : M—*E, with a finite number of singularities,

which agrees with \p on the boundary B. The proof of Lemma 1.9 [4]

will yield a cross section s': M—+E with one singularity such that s'

agrees with f (and hence with \p) on the boundary B. Thus, if s0'

— s'\B, so~So as cross sections into E0.

VI. To complete the proof we proceed as follows. Let XoEM — B

denote the singular point for s' and choose a small concentric «-cell

neighborhood VD VDUDU such that x0EU. Then (M-U, B) is
an ANR pair. Applying the fiber homotopy extension theorem

(FHET) in [l]. There is a homotopy

G: (M - U) X I -* JEo

such that Go = s'\ M — U, Gt is a cross section over M—U for each

t, Oáígl, and Gi\B = s0. Now, (M, M—U) is again an ANR pair

and Go has s' as an extension to M. Again applying the FHET, this

time in the fiber space (E, p, B), G has an extension to a homotopy

G': MXI^E

such that Gi =s" is a cross section over M which extends s0 and has

all its singularities in U. s" can be redefined in U, using the techniques

already referred to, to produce a cross section s which has x0E U as its

only singular point and which extends s0.

4. The main result. Let X denote a topological space and

To(X) = {uEX1: «(/) = «(0) if, and only if, / = 0, 0 g / g l}.

Let p0: To(X)->X be given by po(a>) =w(0). Let T(X) denote T0(X)

plus all the constant paths on X and p: T(X)—*X be given by p(w)
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= w(0). A path field on I is a cross section for p, i.e., a map s: X

—*T(X) such that ps = l. A singularity for 5 is a point x such that

s(x) is the constant path at x. A nonsingular path field is a path

field without singularities.

If X = M, a topological »-manifold (with empty boundary), then

(3, 3o) = (P(M), Po(Af), p, M) is an w-gpb [7], called the tangent

fiber space of M.

Suppose that M is a compact topological »-manifold with boundary

P. Let h: BXI—*M denote an imbedding which puts a "collar" on

P and h(x, 0)=x, xQB. Let A=h(BXl), A° = h(BX[0, 1)), Ai
= h(BX {1}). Then, h may be chosen so that if M' = M-A°, B' = AU

then (M't B') is a homeomorphic copy of (M, B). Let (3, 30) = (T, To,

p, M—B) denote the tangent fiber space of M—B and (3', 30')

= (T', T¿,p', M') the restriction of (3, 30) to M'.

Lemma (4.1). Suppose s0: B'—*T0(M') is a given nonsingular path

field (in M') on B'. Since T0(M') Q T'Q, s0 can be considered as a partial

cross section over B' in the fibered pair (3', 30'). Then, s0 admits an ex-

tension to a path field s: M'^To(M') if, and only if, s0: B'-^Tó admits

an extension to a cross section s': M'—>To'.

Proof. The necessity is trivial. Suppose, therefore, that s0: B'—>Tó

admits an extension, 5': M'—>Tó- s' would serve for s except for the

fact that some of the paths might wander outside of M'. Such paths,

however, start in M'—B'. Let p: M—B-+M' denote a retraction

such that p maps points outside of M' into B'. Then p induces

p': (M—BY-+M'1 and s=p's': M'-^To(M'), is the required extension

of so.

Theorem (4.2). Let M denote a compact connected n-manifold (n =t 2)

with boundary B and s0: B—*To(M) a given nonsingular path field

(in M) on B. Then, s0 can be extended to a nonsingular path field

s: M—*To(M) if, and only if, the Euler characteristic x(M) =0.

Proof. The proof for an empty boundary P is simpler and is im-

plicit in the argument for the case B=i0. We, therefore, assume

B*0.
The necessity is immediate since here we get a fixed point free

map of M into itself homotopic to the identity.

To prove the sufficiency, identify (M, B) with (M1, B') oi the

previous lemma. Using the notation in the previous lemma s0 can be

considered as a partial cross section s0: B'—*T¿, and it suffices to ex-

tend so to s: M'—»Po'. Now, (3', 30') is an w-gpb and hence by our

basic Theorem (3.1), there is a cross section s': M'—*T' with at most
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one singularity (in M'—B') and s'\B' = s0. We may assume (see

proof of (4.1)) that s'(M')ET(M'). s' gives rise to a map/: M'-+M'

by setting/(x) =s'(x)(l), xEM', and /~1. / has a single fixed point

Xo and by (1.3) A/ = ( — l)nIf(xo). But x(M)=Af and hence the as-

sumption that x(Af)=0 implies If(x0)=0. Now, using an argument

identical with that in [4, 2.3], If(x0) =0 is a sufficient condition for

redefining s' in a neighborhood of x0 to produce an extension 5: M'

—+TÓ of So. Thus, our theorem follows.

Since a compact topological »-manifold M with boundary B always

admits a nonsingular path field s0: B-+T0(M) on its boundary we

have the following.

Theorem (4.3). A compact connected topological n-manifold M, with

or without boundary (not necessarily orientable), admits a nonsingular

path field if, and only if, x(M) = 0. In the case of a manifold with bound-
ary, the nonsingular path field may be preassigned on its boundary.

If M is a compact topological manifold with boundary B, a path

field s: M—*T(M) is called regular if xEB implies s(x) is a path in B.

Theorem (4.4). A compact connected topological n-manifold M with

boundary components Bi, • • • , Br admits a regular nonsingular path

field if, and only if, %(M) =0 and %(Bj)=0, 1 JSjjgr.

Theorem (4.5). A compact connected topological n-manifold M with

connected boundary B admits a regular nonsingular path field if, and

only if, x(M) = 0.

Proof. We prove only the sufficiency and it suffices to show x(-B)

= 0. If « is even, « — 1 is odd and x(^) =0. Otherwise, if n is odd, let

2 M denote the double of M. Then

x(2M) = 2X(M) - X(B).

Therefore, since x(2-M) =0 and xC-^0 =0, we have xCB) = 0.

The following theorem bears on a question of M. Hirsch [9]. It is

an immediate corollary of (4.3).

Corollary (4.6). A compact connected topological n-manifold M,

with or without boundary (not necessarily orientable) admits a map

f: M-+M which is fixed point free and homotopic to the identity if, and

only if, x(M)=0.

Remark (4.7). An example of Y. H. Clifton, namely S2VSlVSl

shows that (4.6) is false in general for polyhedra. However, for a large

class of polyhedra (zweidimensional zusammenhängede) Wecken [14]

has proved (4.6). Our result (4.3) is much stronger than (4.6).
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Remark (4.8). The analogue of (4.3) for compact differentiable

»-manifolds and nonsingular vector fields is well known, at least in

the case of no boundary. The result for differentiable manifolds with

boundary is also classical (H. Hopf, Math. Ann. 96 (1927), 225-

250). Both of these results are obtainable as corollaries of our results

for topological manifolds by showing that the tangent bundles in

question are fiber homotopy equivalent to appropriate tangent fiber

spaces. The no-boundary case is given in [4], [7] and the case of a

differentiable manifold M with boundary B is handled as follows.

First "shrink" (M, B) to another copy (M', B') via a tubular neigh-

borhood of P. Then, the tangent bandle of M may be identified with

the tangent bundle of M restricted to M'. This restricted tangent

bundle is easily seen to be fiber homotopy equivalent to the tangent

fiber space of M—B, restricted to M'. Lemma (4.1) completes the

necessary paraphernalia.
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