CONTRACTIBLE COMPLEXES IN S»
LESLIE C. GLASER!

1. Introduction. By a pseudo #z-cell is meant a contractible com-
pact combinatorial #-manifold with boundary. Poenaru [9] and
Mazur [7] gave the first examples of pseudo 4-cells which are not
topological 4-cells, but whose products with the unit interval are
topologically 5-cells. Newman [8] defines a 2-complex P such that
m(P)#1, while Hi(P, Z) =0=H,(P, Z). Curtis [4] making use of
this 2-complex has shown that, for each # =4, there exists a pseudo
n-cell which is not a topological n-cell because its boundary fails to
be simply connected. Curtis [4] also shows that the cartesian product
of a pseudo n-cell and an interval is the topological (n+1)-cell, I*+!
if n=5.

Curtis [5] making use of Mazur’s peculiar embedding of the dunce
hat in S* [7], [13] gives an example of a contractible 2-complex K
embedded as a subcomplex of a combinatorial triangulation of S*
such that m1(S*—K) # 1. The purpose of this paper is to show that for
n = 4 there exists a contractible (# —2)-complex K2 combinatorially
embedded in S* such that m(S"—K"2)1. The regular neighbor-
hood N*»=N(K"?) of K™ ?in S" is also a pseudo n-cell which fails to
be a topological #n-cell and its product with the unit interval I is
shown to be a combinatorial (z+1)-cell, rather than just merely
topological. In addition, each N» (n=5) gives examples of com-
binatorial #-manifolds with boundary which are not topologically
I" but can be expressed as the union of two combinatorial n-balls
whose intersection is also a combinatorial n-ball.

2. Definitions. We will use the terminology of [12], [13]. All
manifolds and all mappings or homeomorphisms will be considered
in the combinatorial sense. We will use =~ to denote combinatorial
equivalence. If the complex K collapses to the complex L, this will
be denoted K\ L.

Let f: X—Y be continuous. The identification space Y, derived
from (XX [0, 1])\UY by identifying each point (x, 1) with the point
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f(x) in Y and using the identification topology is called the mapping
cylinder of f.

3. Preliminaries. The following two lemmas are well known and
elementary, hence no proof will be included.

LEMMA 1. If C is a k-complex embedded as a finite subcomplex of a
combinatorial n-sphere S* and M is a regular neighborhood of C in S,
with C Cint M, then there is a combinatorial map ¢: Bd M—C such
that M is combinatorially equivalent to IXBd M\J,C, the mapping
cylinder of ¢.

LEMMA 2. Suppose C is a k-complex embedded as a finite subcomplex
of a combinatorial n-sphere S* and N is any regular neighborhood of C
in S*, such that CCint N; then (N —C) =m(Bd N).

The topological dunce hat D is obtained from a triangle abc say,
by identifying all three sides ab=bc=ac.

THEOREM 1. There exist two combinatorially inequivalent embeddings
D,, D, of the dunce hat D in S*, such that the regular neighborhood N, of
D, is combinatorially I*, while N the regular neighborhood of D, is not
topologically I, Moreover, m(Bd Nj)#1, m(Ny—D,)#1, but m(S*
- Dz) =1,

PRrROOF OF THEOREM 1. Let D, be any combinatorial embedding of
D in S*C.S*%. Then Ny \ N, the regular neighborhood of D in S?, and
since Ny~1I3, Ny~I*

For D, we will use Mazur’s embedding of D in S* (as in Theorem 5
[13]). Since Ny~ W* (also Theorem 5 [13]) and m(Bd W*) 51 (see
[7]) we have that N, I%. The fact that m(N3— D)1 follows from
Lemma 2. We see that m(S*—D;) =1 by considering Mazur’s em-
bedding of D in S4. Thatis D C W4C 2W*= S*. Since S*— Dy = WAJW*
—D,=W4*UJ(Bd WX [0, 1)) (using Lemma 1), we see that S*—D,
is of the same homotopy type as W* and m(S*—D;) =1.

To see that these two embeddings are combinatorially inequiva-
lent, suppose there exists a p.w.l. homeomorphism taking S*onto S*
carrying D, onto D,. Let a,, a; be the points of D, D, respectively,
which correspond to the point a(=b=c) in D. Then by subdividing
the triangulation of S* so that & is simplicial, we get that k carries
st(a1, S*) onto st(as, S%), each combinatorial 4-balls. Also & carries
Ik(ay, Dy) Clk(a,, S%) =~ S® onto lk(as, D;) Clk(as, S*) =~ .S This leads
to a contradiction, since there exists no homeomorphism of S? onto
S? carrying lk(a,, D) as in lk(a;, S*) onto lk(as, D) as in lk(a,, S%).
See Figures 5 and 8 of [13].
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THEOREM 2. There exists a contractible 2-complex K and two in-
equivalent embeddings K,, K, of K in S* so that the regular neighborhood
N, of K, is a combinatorial 4-ball, while m(S*—K,) #1.

REMARK. Since N, =14 K; is cellular in S* and hence S*—K,=E*
and m(S*—K;) =1. Also it will follow from a later result, which does
not use the particular construction of the embedding of K, in S%,
that if N, is the regular neighborhood of K; in S* then m(Bd N;) =1
and hence N, I*.

ProoF oF THEOREM 2. K will be the union of two disjoint copies
of the dunce hat D joined together by a polyhedral segment inter-
secting each in ¢(=b=c). K, will be the embedding of K in S3CS*
and N, ~I* as in Theorem 1.

To get K,, we will use Curtis’s modification [5]. Let us again con-
sider S* as 2W* (Mazur's pseudo 4-cell). We have a D’ and D"
(copies of D) in each copy of W% Since S*—(D' + D)
=~(W*—D")JU(W*—D")~(Bd W*X [0, 1))U(Bd W*x[0, 1)) and
m(Bd W*) =1, we have m(S*— (D'+D"))#1. Let A be a polyhedral
arc in S* such that AND’'=a’, AND" =a"" (where a’, "’ correspond
to a(=b=c) in D) and ANBd W*= {p} Such an 4 can easily be
gotten because of the particular embedding of D’, D" in each copy of
WH4. Then K,=D'\JA\UD"” will be an embedding of K in S* such
that m(S*—K,) #1.

Finally, it is clear that the embeddings of K; and K, in S* are in-
equivalent since the fundamental groups of their complements are
different.

THEOREM 3. If N, is the regular neighborhood of Ki in S* then
NoXI=~1I".

Proor oF THEOREM 3. Since K,~D\UAUD, two disjoint copies
of D joined together by a polyhedra arc intersecting each D in the
point @ and DXIN{a} (Theorem 1 [13]), it follows easily that
K:XINO. Hence Ny XINK;XINO and this implies that N, X7 is a
combinatorial 5-ball (Corollary 1, [12]).

THEOREM 4. Suppose K is a contractible 2-complex such that K X I\O
and K is embedded in the interior of a contractible 4-manifold with
boundary W*CE* such that m(W*—K) #~1. Then given any combina-
torial triangulation T of E* which contains K as a subcomplex, there
exists no 3-manifold (with or without boundary) in E* which is a sub-
complex of T containing K.

REMARK. Mazur’s embedding of D in S* is such a contractible 2-
complex. It follows from the theorem that even though D can be em-
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bedded in E?, for this particular embedding it lies in no 3-manifold
in E4

ProoF oF THEOREM 4. Suppose there exists such a 3-manifold M3,
that is KCM3CT. Then for some subdivision of T and hence of M3,
say T, we would have N(K, M?® Cint W*, where N(K, M?) denotes
the simplicial neighborhood of K in M? under the second barycentric
subdivision of T(M?). Also let us suppose that T is so fine that
N(N(K, M*), T) Cint W4 Now if N(K, M?) =1I3, then N(N(K, M?),
T) =I*Cint W4 We then could use Bd I*=.5% to shrink nontrivial
curves of W*—K missing K. (Also see Theorem 6 of [13].) Therefore,
N(K, M®) =18 However, N(K, M?*) XINKXINO and this implies
that N X I=I*which in turn implies N = I*(|1], [2]) which contradicts
the above. This contradiction arose by assuming there existed an M?
with KCM3CT.

4, Contractible complexes in S*. If K is a k-complex of a com-
binatorial n#-sphere S*, we will use N(X, S*) to denote the canonical
regular neighborhood of K under the second barycentric subdivision
of S*. ZK and CK will denote the suspension of K and cone over K
respectively. Also, we will write ZK =C*K\JC K with CtKNC"K
=K, where in letting p and ¢ denote the “top” and “bottom” points
of ZK used in getting the suspension of K, we have that C*K is the
cone over K in 2K from p and C-K is the cone over K in 2K from g.

LeMMA 3. Suppose K is a k-complex in S* such that N(K, S*) =~ I
and B* is a combinatorial n-ball in S* such that N(K, S*) Cint B». If
IK=K is considered as embedded in S*+1=Br+1\UC(Bd Bn+Y), where
B*1=3B" then N(K, S*t) =~ I"t1 gnd m(S~+1—K)=1.

Proor oF Lemma 3. Z[N(R, S)] is a regular neighborhood of K
in S**1, That is, Z[N(R, $")]\ZK =K since N(K, S*)\K and it is
an n-manifold with boundary since ZI® ~ I**!, Hence I*+1
~Z[N(R, S")]|~N(K, S**') (Theorem 23, [12]). It follows that
m(S**1—K) =1 since K is cellular in S*t1 (the decreasing sequence of
(n+1)-cells are the canonical regular neighborhoods of K under in-
creasingly higher order barycentric subdivisions of S*+!). That is
Sl _ K = Entl [2]

LEMMA 4. Suppose K is a k-complex in S* (n = 3) such that m(S*— K)
#“1 and B is a combinatorial n-ball in S* such that K Cint B». Then
if SR =K is considered as embedded in S*t! as in Lemma 3, then
m(SH—K)#1.

ProoF oF LEMMA 4. Since m(S*— K) =1, we have that m(B*—K)
# 1. Also ZB" —ZK = B! — K ~ (B» — K) X (—1, 1). Hence
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m(B**1—K) 1. The claim is that m(S*+*—k)=1. Suppose other-
wise. Let J be any polyhedral simple closed curve in B**!—K which
is nontrivial in B**1—K. Suppose J bounds a polyhedral singular
disk D in S**1—K. Let p, q be the suspension points of ZB» and r
the vertex point in C(Bd(ZB*")). Since n+12=4, we can adjust D to
a singular disk D’ (keeping J fixed) so that D’M(polyhedral arc prq)
= ¢&. But then D’ can be retracted onto a singular disk D"’ bounded
by J in B**!1—K by projecting the part of D’ not in B**! from r onto
Bd B~+1— {p+g}. This leads to a contradiction that m(B"*'—K)
#1, therefore m(S*+1—K) #1.

LeEMMA 5. If K is a k-complex in S* and m(S"—K) #1, denoting
N(K, S*) by N, then N # I*, m(N — K) =m(Bd N) #1 and
m(CI(S*—N)) #1.

Proor oF LEMMA 5. If N=1I" then K is cellular in S* and this
would imply that m(S*—K) =1, contradicting the hypothesis of the
lemma. Also, S*"—K = (N —K)UCI(S*—N) = ([0, 1)
XBd N)UCI(S*—N) (by Lemma 1). Hence S*—K is homotopically
equivalent to C1(S*— N). Therefore m(CI(S*—N)) #1.

Suppose m(Bd N) =1. Since S* = N\UCI(S"— N) and NNCI(S"—N)
=Bd N, if m(Bd N)=1, then using van Kampen’s theorem we get
that m(S*) is the free product m(N) * m(S*—N), which would not
be trivial (Corollary 6.4.5, p. 244, [6]). Therefore, m(Bd N) 1 and
by Lemma 2 m(Bd N) =m(N—K) 1.

LEMMA 6. Suppose K is a k-complex in S* such that R XIN\O. Let
K=3K be p.w.l. embedded in S*+' (not necessarily as in Lemma 3),
then N(K, S*1) X1 =Ir+2,

PROOF OF LEMMA 6. First we note that if L is a subcomplex of K
such that K\, if K=ZK and L=ZL then K\.L. This follows by
induction on the number of simplexes of K — L. Next we observe that
if K is a complex such that K\O then K =ZK\0. This follows since
RN\{v} (v some vertex of R) and by the above remark K =2ZK\.Zv
No. Finally, if Risa complex such that K XINOandif K=2K, then
K X IN\O. This follows since ZR X INZ(K X I) and Z(R XI)\0 by the
second remark.

Therefore since K X I\0, we have that K XI\0. Hence, N(K, S*+)
XINK XINO and N(K, St XI=Ir+2

THEOREM 5. For n=4 there exists a contractible (n—2)-complex P
and two inequivalent embeddings Py, Ps of P in S* such that the regular
neighborhood Ny of Pi is a combinatorial n-ball and m(S"—P;)=1.
However, m(S*—P;)#1 and if N is the regular neighborhood of P,,
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Ne#=Ir, m(Bd Ny) =m(N:—P3)#1 and N.XI is a combinatorial
(n+1)-ball. Moreover P XI\ 0.

PRrooF oF THEOREM 5. The proof will be by induction. For n=4 the
result follows from Theorem 2, Lemma 5, and Theorem 3. Suppose
inductively for n =k we have a contractible (¢ —2)-complex p*~2, two
embeddings P¥~%, Pt% in S* such that Ny~I* and m(St—P; %) =1,
while m(S*—P: %) =1, N3#I*, m(Bd Ni)=m(N;—P; %1 and
NEXI=I*1, Also assume P¥2X I\ 0.

Using Lemma 3 we get a contractible (¥—1)-complex P;~! ~ZP;~?
in S¥1 such that N(P¥!, Sk+1) ~ [¥+1 and m(S*+!1—Pr~ ') =1. Using
Lemma 4 we get a contractible (¢—1)-complex P; '=ZP; 2 in St+!
such that m(S**1— Pt 1) 21, Lemma 5 then implies that N5+! I¥+1,
w1 (NEF — P51y =y (Bd N5*') #1. Since Py '=ZP; 2 and P; 2 X I\ 0,
the third remark in the proof of Lemma 6 gives us that P;~* X I\ 0.
Also, Lemma 6 gives us that N(P;™?, S¥1) X I~ I**2, Finally, since
Pi2x~Pi?and P '=3ZP:? (i=1, 2) we have that P} '=P;~2.

COROLLARY 6. For n=4 there exists a contractible (n—1)-complex
K»14n S* such that N(K, S*) # I, m(Bd N(K, S*)) 1 and N(K, S*)
XI=Iv1 Also m(S*—K 1)1,

COROLLARY 7. For n=4 there exists a contractible n-complex (com-
binatorial n-manifold with boundary) N™ in S™ such that N™=I*,
m(Bd N*)#1 and N*XI=~Ir+1. Also m(S*—N*)#1.

Corollary 7 follows from Theorem 5 by taking N*=N, of that
theorem; Corollary 6 by reducing N* to K*~! using Whitehead ele-
mentary contractions and the fact that N(K*1, S*) = N*. m(S*— N")
#1 since m(CI(S*—N;))>#1 by Lemma 5. m(S*—K" 1)1 since
we can assume that K»~!Cint N" and hence S*— K"! is of the same
homotopy type as CI(S"— N") (using Lemma 1).

THEOREM 6. For n=5, N3 (of Theorem 5) is a contractible com-
binatorial n-manifold with boundary which is not topological I*, but is
combinatorially equivalent to the umion of two combinatorial n-balls,
B}\UB; such that BiN\B3~ Bj; a combinatorial n-ball which is a sub-
complex of each. Furthermore, int N3=X\UY where X=Y=XNY
=~ E*, while int N3~ E".

PRrROOF OF THEOREM 6. For =5, Ni=~N(P3%, S*) = N(ZP33, S*).
Also, N371= N(P3~3, S* 1) I*1 with N}~2X I ~I" We observe that
N2=N(C+P23, S")\UN(C-P2~3, S»). Since CtP3~®*\.0 and C-P3~3
N0, Theorem 23, [12] gives us that N (C+P33, S*) =~B? and
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N(C-P373 S*)~Bj, the two desired combinatorial z-balls. Since
S™ was obtained as ZB"1\UC(Bd £B"!) where N3~!= N(P273, S*1)
lies in int B*!, for some B»~! C S*, it follows that B} N B}
~N(CtP33, SYN\N(C-P3~3, S")=N(P33, S*)=N(P:3 S—1)XI
which is =~ In, that is, our Bj. N(P33, S*) =~ N(P2~3, S 1) X I since
the latter expression is clearly a regular neighborhood of P33 in S»
and any two regular neighborhoods of the same complex are com-
binatorially equivalent.

Letting X =int B}, Y =int B}, then XN Y =int B} so that int N}
=XUY and X=Y=XNY=E" We have that int N} E" since N}
is an #-manifold with boundary (and hence collared from the inside
[3]) and m(Bd N3) #1. That is, if int Nj=E", simple closed curves
near “infinity” can be shrunk near “infinity,” but Bd N3 X [0, 1) the
collar of Bd N3 in N7 is not simply connected and hence there exist
nontrivial simple closed curves in Bd N} X (0, 1).

THEOREM 7. Suppose C' is a contractible k-complex that can be
p.w.l. embedded in a combinatorial n-sphere S* with triangulation T as
a subcomplex C such that m(S*—C)#=1 (necessarily k=n, n—1, or
n—2 by Lemma 5 and Theorem 1 [5]). Then for n=5 there exists a
p.wl. embedding C of C' in S* under T such that N(C, S™)
~N(C, S*)(£I"), but now m(S*—C) =1.

ProorF oF THEOREM 7. Let 2 be the combinatorial #-manifold
formed by attaching two copies of N(C, S*) together along their
boundaries. Since N(C, S*) is contractible, T is a combinatorial 7-
manifold with the homotopy type of S*. Hence forn=5, Z is a topo-
logical n-sphere which is also a combinatorial #-manifold [10], [14].
Let us also denote C in 2 as the complex C in one copy of N(C, S*)
used in forming 2. Now m(Z — C) =1 since £ — C = {[0, 1)
XBd N(C, S*)}\UN(C, S*) which is homotopically equivalent to
N(C, S™). Let p be an interior point of some n-simplex of 2 missing
the copy of N(C, S*) in Z containing C. Now Z— {p} is p.w.l. equiv-
alent to S»— {q} under T for some g€S" since n=5 [11]. Hence
there exists a p.w.l. homeomorphism & of Z — {p} onto S»— {q} tak-
ing C and N(C, S*) (as in T—{p}) into S*—{g} (under T). Then
R(C)=C is a p.w.l. embedding of €’ in S* and m(S*—C) =1 since
m(Z—C) =1. Since k(N(C, S*)) is a regular neighborhood of € in S»
under a subdivision of T, N(C, S*) =h(N(C, S*) ~N(C, S*). Note,
if ¢’ is the contractible k-complex given in Theorem 5, then one has
that 2 is in fact a combinatorial n-sphere (since N X I = I*+1), Hence
2 =S8" under T and the result follows immediately.
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