
C0NTRACTD3LE COMPLEXES IN S"

LESLIE C. GLASER1

1. Introduction. By a pseudo «-cell is meant a contractible com-

pact combinatorial «-manifold with boundary. Poenaru [9] and

Mazur [7] gave the first examples of pseudo 4-cells which are not

topological 4-cells, but whose products with the unit interval are

topologically 5-cells. Newman [8] defines a 2-complex P such that

7Ti(P)^l, while Hi(P, Z)=0 = #2(P, Z). Curtis [4] making use of

this 2-complex has shown that, for each « 14, there exists a pseudo

w-cell which is not a topological «-cell because its boundary fails to

be simply connected. Curtis [4] also shows that the cartesian product

of a pseudo «-cell and an interval is the topological (»+l)-cell, /"+1

if «15.
Curtis [5 ] making use of Mazur's peculiar embedding of the dunce

hat in S* [7], [13] gives an example of a contractible 2-complex K

embedded as a subcomplex of a combinatorial triangulation of 5*

such that 7Ti(54—K) 9e 1. The purpose of this paper is to show that for

«14 there exists a contractible (« —2)-complex Kn~2 combinatorially

embedded in 5" such that iri(Sn—Kn~2)^ 1. The regular neighbor-

hood Nn — N(Kn-2) of Kn~2 in S" is also a pseudo «-cell which fails to

be a topological «-cell and its product with the unit interval I is

shown to be a combinatorial («-f-l)-cell, rather than just merely

topological. In addition, each Nn («15) gives examples of com-

binatorial «-manifolds with boundary which are not topologically

7" but can be expressed as the union of two combinatorial «-balls

whose intersection is also a combinatorial «-ball.

2. Definitions. We will use the terminology of [12], [13]. All

manifolds and all mappings or homeomorphisms will be considered

in the combinatorial sense. We will use ~ to denote combinatorial

equivalence. If the complex K collapses to the complex L, this will

be denoted K\L.

Let /: X—» Y be continuous. The identification space F/ derived

from (XX [0, l])UFby identifying each point (x, 1) with the point
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f(x) in Y and using the identification topology is called the mapping

cylinder of /.

3. Preliminaries. The following two lemmas are well known and

elementary, hence no proof will be included.

Lemma 1. If C is a k-complex embedded as a finite subcomplex of a

combinatorial n-sphere Sn and M is a regular neighborhood of C in S,

with GCint M, then there is a combinatorial map d>: Bd M—*C such

that M is combinatorially equivalent to 2XBd MVJ^C, the mapping

cylinder of <p.

Lemma 2. Suppose C is a k-complex embedded as a finite subcomplex

of a combinatorial n-sphere Sn and N is any regular neighborhood of C

in Sn, such that CQint N; then wi(N-Q =7n(Bd N).

The topological dunce hat D is obtained from a triangle abc say,

by identifying all three sides ab = bc = ac.

Theorem 1. There exist two combinatorially inequivalent embeddings

Pi, Di of the dunce hat D in S4, such that the regular neighborhood Ni of

Di is combinatorially I*, while N2 the regular neighborhood of Di is not

topologically I*. Moreover, in(Bd Ní)t¿1, ti(Ní—Dí)t¿1, but wi(S*

-2*)-l.

Proof of Theorem 1. Let Pi be any combinatorial embedding of

D in S3QS*. Then 2Vi\ Ñi, the regular neighborhood of D in S*, and
since Ñi~P, Ari«24.

For Di we will use Mazur's embedding of D in S4 (as in Theorem 5

[13]). Since N2~W4 (also Theorem 5 [13]) and 7n(Bd W4)^! (see

[7]) we have that Ni^P. The fact that tti(Ní-Dí)^1 follows from
Lemma 2. We see that 7Ti(54 — P2) = l by considering Mazur's em-

bedding of D in S*. That is D Q W* Q 2 W* « S\ Since S* - D2 « W* W W*
-Di~W*\J(Bd WX[0, 1)) (using Lemma 1), we see that S*-Di

is of the same homotopy type as W4 and 7Ti(54 — P2) = 1.

To see that these two embeddings are combinatorially inequiva-

lent, suppose there exists a p.w.l. homeomorphism taking S* onto S4

carrying Pi onto Di. Let oi, a2 be the points of Pi, P2 respectively,

which correspond to the point a( = b = c) in P. Then by subdividing

the triangulation of S* so that h is simplicial, we get that h carries

st(ai, S4) onto st(c2, S4), each combinatorial 4-balls. Also h carries

lk(oi, Pi) Clk(oi, 54) «5s onto lk(a2, P2) Clk(a2, 54) «5». This leads

to a contradiction, since there exists no homeomorphism of 5s onto

S* carrying lk(ai, Pi) as in lk(ai, S*) onto lk(<i2, Di) as in lk(oî, S4).

See Figures 5 and 8 of [13].



I96sl CONTRACTIBLE COMPLEXES IN S* 1359

Theorem 2. There exists a contractible 2-complex K and two in-

equivalent embeddings Ki, K2 of K in S4 so that the regular neighborhood

Ni of Ki is a combinatorial i-ball, while ti(S4 — K2) j¿\.

Remark. Since Ni^I*, Ki is cellular in S* and hence Si—Ki=Ei

and tti(S4—Ki) = 1. Also it will follow from a later result, which does

not use the particular construction of the embedding of K2 in S4,

that if N2 is the regular neighborhood of K2 in SA then xi(Bd N2) j± 1

and hence N2^I*.

Proof of Theorem 2. K will be the union of two disjoint copies

of the dunce hat D joined together by a polyhedral segment inter-

secting each in a( = b = c). Ki will be the embedding of K in S3ES*

and Ni^I* as in Theorem 1.

To get K2, we will use Curtis's modification [5]. Let us again con-

sider S4 as 2 IF4 (Mazur's pseudo 4-cell). We have a D' and D"

(copies of D) in each copy of W*. Since S*-(D'+ D")

^(W*-D')VJ(Wi-D")^(BdWiX[0, l))U(Bd JF4x[0, 1)) and
7n(Bd W) ^ 1, we have tti(54- (D'+D")) ^ \. Let A he a polyhedral

arc in S4 such that AC\D'=a', AC\D"=a" (where a', a" correspond

to a( = b = c) in D) and Ai\Bd W*= {p}. Such an A can easily be

gotten because of the particular embedding of D', D" in each copy of

W*. Then Ki=D'\JA\JD" will be an embedding of K in S* such
that7ri(54-ü:2)?íl.

Finally, it is clear that the embeddings of Ki and Kt in S4 are in-

equivalent since the fundamental groups of their complements are

different.

Theorem 3. If Ni is the regular neighborhood of K2 in S* then
NiXl~P.

Proof of Theorem 3. Since Ki~DUAKJD, two disjoint copies

of D joined together by a polyhedra arc intersecting each D in the

point a and DXl\{a} (Theorem 1 [13]), it follows easily that

KiXl\0. Hence N2XI\K2XI\0 and this implies that JV,X/ is a
combinatorial 5-ball (Corollary 1„ [12]).

Theorem 4. Suppose K is a contractible 2-complex such that KXI\0

and K is embedded in the interior of a contractible 4-manifold with

boundary W*EE* such that 7ri(IF4—K)¿¿1. Then given any combina-

torial triangulation T of E* which contains K as a subcomplex, there

exists no 3-manifold (with or without boundary) in Ek which is a sub-

complex of T containing K.

Remark. Mazur's embedding of D in S* is such a contractible 2-

complex. It follows from the theorem that even though D can be em-
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bedded in E3, for this particular embedding it lies in no 3-manifold

inP4.

Proof of Theorem 4. Suppose there exists such a 3-manifold M3,

that is KQM3QT. Then for some subdivision of T and hence of Mz,

say f, we would have N(K, M3) Qint W4, where N(K, M3) denotes

the simplicial neighborhood of K in M3 under the second barycentric

subdivision of t(M3). Also let us suppose that f is so fine that

N(N(K, M3), f) Qint W4. Now if N(K, M3)=P, then N(N(K, M3),
f)=I4Qint W4. We then could use Bd 74 = S3 to shrink nontrivial

curves of W4—K missing K. (Also see Theorem 6 of [l3].) Therefore,

N(K, M3)?¿I3. However, N(K, M3)XI\KXI\0 and this implies
that ArX7 = 74which in turn implies N = I3( [l ], [2]) which contradicts

the above. This contradiction arose by assuming there existed an M3

with KQM3QT.

A. Contractible complexes in S". If K is a ¿-complex of a com-

binatorial «-sphere 5", we will use N(K, S") to denote the canonical

regular neighborhood of K under the second barycentric subdivision

of Sn. 2P and CK will denote the suspension of K and cone over K

respectively. Also, we will write 2P = C+PUC-P with C+KCsC'K

— K, where in letting /» and q denote the "top" and "bottom" points

of 2P used in getting the suspension of K, we have that C+K is the

cone over K in 2P from p and C~K is the cone over K in 2P from q.

Lemma 3. Suppose K is a k-complex in Sn such that N(K, Sn) ~In

and Bn is a combinatorial n-ball in Sn such that N(ít, Sn) Qint Pn. If

2P=P is considered as embedded in 5n+1=Pn+1UC(Bd Pn+1), where

P"+i=2P", then N(K, Sn+1) ~P+1 and wi(Sn+1-K) = l.

Proof of Lemma 3. 2 [N(K, 5") ] is a regular neighborhood of K

in Sn+1. That is, 2[N(K, S»)]\2Ê=K since N(Ê, Sn)\Ê and it is

an »-manifold with boundary since 27" « 7n+1. Hence 7B+1

«2[2V(2?, Sn)]~N(K, Sn+1) (Theorem 23n [12]). It follows that
7Ti(5n+1—K) = 1 since K is cellular in Sn+1 (the decreasing sequence of

(» + 1)-cells are the canonical regular neighborhoods of K under in-

creasingly higher order barycentric subdivisions of Sn+1). That is
S»+1-K = En+1 [2].

Lemma 4. Suppose K is a k-complex in Sn (n ^ 3) such that iri(S" — K)

?¿1 and P" is a combinatorial n-ball in Sn such that PCint Bn. Then

if "ZiK=K is considered as embedded in Sn+1 as in Lemma 3, then
Ti(Sn+1-K)9¿l.

Proof of Lemma 4. Since 7Ti(5n — K)t¿1, we have that xi(P" — Ê)

* 1. Also 2P" - 22? =■ B»+1 - P « (P» - K) X (-1, 1).  Hence
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TTi(Bn+l-K)^í. The claim is that in(Sn+l-k)¿¿l. Suppose other-

wise. Let / be any polyhedral simple closed curve in Bn+1 — K which

is nontrivial in Bn+1 — K. Suppose J bounds a polyhedral singular

disk D in Sn+1— K. Let p, q be the suspension points of 25" and r

the vertex point in C(Bd(S5")). Since «+114, we can adjust D to

a singular disk D' (keeping / fixed) so that D'C\ (polyhedral arc prq)

= 0. But then D' can be retracted onto a singular disk D" bounded

by J in Bn+1—K by projecting the part of D' not in 5n+1 from r onto

Bd Bn+1-{p+q}. This leads to a contradiction that in(Bn+l-K)

1*1, therefore in(Sn+1-K)^l.

Lemma 5. If K is a k-complex in S" and wi(Sn—K)?¿í, denoting

N(K, S») by N, then N * I", in(N - K) = in(Bd N) * 1 and
iri(Cl(5"-A0)^l.

Proof of Lemma 5. If N = In then K is cellular in 5" and this

would imply that wi(Sn—K) = 1, contradicting the hypothesis of the

lemma. Also, Sn - K ~ (N - K) \J Cl(5" - iV) « ([0, 1)
XBd N)KJCl(Sn—N) (by Lemma 1). Hence Sn-K is homotopically

equivalent to Cl(S"-N). Therefore wi(Cl(Sn-N))^i.

Suppose iri(Bd AO = 1. Since 5" = NVJCl (S» - N) and NC\ Cl (5" - AO
= Bd N, if 7Ti(Bd A7) = 1, then using van Kampen's theorem we get

that iri(Sn) is the free product 7Ti(A0 * in(Sn — N), which would not

be trivial (Corollary 6.4.5, p. 244, [6]). Therefore, in(Bd AO^l and

by Lemma 2 7n(Bd N)=tri(N-K)^l.

Lemma 6. Suppose K is a k-complex in Sn such that EXI\0. Let

K=~ZK be p.w.l. embedded in Sn+l (not necessarily as in Lemma 3),

thenN(K,S»+1)Xl~In+2.

Proof of Lemma 6. First we note that if L is a subcomplex of Ê

Such that K\L, if K=2Ê and L=ZL then K\L. This follows by
induction on the number of simplexes of K — L. Next we observe that

if K is a complex such that Ê\0 then K='SK\0. This follows since

-r£\{î)} (v some vertex of K) and by the above remark K=^EÊ\Zv

\v. Finally, if K is a complex such that KXl\0 and if K =1,K, then

ÍX/\0. This follows since 2KXI\2(KXI) and 2(KXI)\0 by the
second remark.

Therefore since EXI\0, we have that KXI\0. Hence, N(K, Sn+1)

XI\KXI\0 and N(K, 5"+1)X/«7"+2.

Theorem 5. For «14 there exists a contractible (n — 2)-complex P

and two inequivalent embeddings Pi, Pi of P in S" such that the regular

neighborhood Ni of Pi is a combinatorial n-ball and iri(Sn—Pi) = 1.

However, TTi(Sn—P2)^i and if N2 is the regular neighborhood of P2,
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Ni¿¿In, 7Ti(Bd ̂ 2) =7Ti(A2—P2)^l  and  N2XI is a  combinatorial

(n+l)-ball. Moreover PXI\ 0.

Proof of Theorem 5. The proof will be by induction. For » = 4 the

result follows from Theorem 2, Lemma 5, and Theorem 3. Suppose

inductively for n = k we have a contractible (k —2)-complex pk~2, two

embeddings PÎ"2, P\~2 in 5* such that N\~P and 7ri(5*-PÏ-2) = 1,
while 7ri(5*-Pf-2)^l, Nl^P, Ti(BdN¡)=Ti(N¡-P¡-2)^l and
A2*X2«2*+1. Also assume Pk~2Xl\ 0.

Using Lemma 3 we get a contractible (k — l)-complex Pf-1 «2Pf-2

in S«+1 such that N(Pt1'\ 5*+I)«2*+1 and Ti(Sk+1 - P^1) = 1- Using

Lemma 4 we get a contractible (k — l)-complex P2_1=2P2-2 in Sk+1

such that wi(Sk+1-Pi~1)^l. Lemma 5 then implies that 2Vf+VJ*+1,

w^N^-P*-1) =7Ti(Bd A2t+1) ̂  1. Since P2i"1=2P21-2 and P^2X2\ 0,

the third remark in the proof of Lemma 6 gives us that Pf-1 X7\ 0.

Also, Lemma 6 gives us that A(P2_1, 5*+I)X7«7*+2. Finally, since

P*-2«P*-2 and Pf"1 =2Pf2 (i-l, 2) we have that Pf"1 «P*~2.

Corollary 6. For »5:4 í/íere exists a contractible (n — l)-complex

P»-1 i« 5» such that N(K, Sn)^P, 7n(Bd N(K, S")) ̂  1 and N(K, S»)

X7«7"+1. Also xi(5"-P"-1)fí1.

Corollary 7. Por »2:4 there exists a contractible n-complex (com-

binatorial n-manifold with boundary) Nn in S" such that Nn ¿¿P,

7n(Bd N")¿¿1 and NnXI~P+1. Also in(Sn-Nn)^l.

Corollary 7 follows from Theorem 5 by taking Nn = Ni oí that

theorem; Corollary 6 by reducing Nn to P"_1 using Whitehead ele-

mentary contractions and the fact that A(PB_1, S") « A". in(S" — Nn)

?¿1 since Tr^CKS"-^))^! by Lemma 5. tti(5" -P""1) ?¿ 1 since

we can assume that Pn_1Cint Nn and hence S" — Kn~1 is of the same

homotopy type as Cl(S" — N") (using Lemma 1).

Theorem 6. For »2:5, A7" (of Theorem 5) is a contractible com-

binatorial n-manifold with boundary which is not topological 7", but is

combinatorially equivalent to the union of two combinatorial n-balls,

BÎUB2 such that B1P\Bl~B1 a combinatorial n-ball which is a sub-

complex of each. Furthermore, int N%~X\JY where X^Y^XC\Y

«P», while int N\^En.

Proof of Theorem 6. For «2:5, Nl^N(PT\ Sn) « A(2P^~3, 5").
Also, NZ-^Ntff3, S^^P-1 with N^-2XI~P. We observe that
Nl~N(C+PT3, Sn)VJN(C~Pr3, S"). Since C+P^~s\0 and C-PT3
\0,  Theorem   23„   [12]   gives  us  that   N(C+Pl~z,   Sn)~BÎ and
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N(C-Pr3, Sn)~Bl, the two desired combinatorial «-balls. Since

5" was obtained as 2B"-1UC(Bd 25"-1) where N^~1 = N(P^3, Sn~l)

lies in int Bn~\ for some Bn~l C Sn~\ it follows that B\ C\ B2
~N(C+Pn2-3, S»)r\N(C-Pnf3, Sn)~N(Pn2~3, Sn)~N(Pt3, S^XI

which is ml», that is, our B\. N(Pnf3, Sn)~N(Pn2~3, Sn~l)Xl since

the latter expression is clearly a regular neighborhood of P2~3 in 5"

and any two regular neighborhoods of the same complex are com-

binatorially equivalent.

Letting X = int£J, F = int B\, then XC\Y~intB\ so that int A^

«ZU F and X« Y~XC\ F«£\ We have that int A^E" since A^

is an «-manifold with boundary (and hence collared from the inside

[3]) and 7n(Bd Nl)^\. That is, if int N\ = En, simple closed curves

near "infinity" can be shrunk near "infinity," but Bd A^X [0, 1) the

collar of Bd A7£ in A7?? is not simply connected and hence there exist

nontrivial simple closed curves in Bd A^X(0, 1).

Theorem 7. Suppose C is a contractible k-complex that can be

p.w.l. embedded in a combinatorial n-sphere Sn with triangulation T as

a subcomplex C such that xi(5"— C)¥-\. (necessarily k=n, n—i, or

« — 2 by Lemma 5 and Theorem 1 [5]). Then for «15 there exists a

p.w.l. embedding C of C in Sn under T such that N(C, Sn)
~N(C, Sn)(^I"), but now in(Sn-C) = 1.

Proof of Theorem 7. Let 2 be the combinatorial «-manifold

formed by attaching two copies of N(C, S") together along their

boundaries. Since N(C, Sn) is contractible, 2 is a combinatorial w-

manifold with the homotopy type of S". Hence for «15, 2 is a topo-

logical «-sphere which is also a combinatorial «-manifold [lO], [14].

Let us also denote C in 2 as the complex C in one copy of N(C, Sn)

used in forming 2. Now tti(2 - C) = 1 since 2 - C = {[0, 1)

XBdN(C, Sn)}VN(C, Sn) which is homotopically equivalent to

N(C, Sn). Let p be an interior point of some «-simplex of 2 missing

the copy of N(C, S") in 2 containing C. Now 2— {p} is p.w.l. equiv-

alent to Sn— {q} under T for some qESn since «15 [ll]. Hence

there exists a p.w.l. homeomorphism h of 2— {p} onto Sn— {q} tak-

ing C and N(C, Sn) (as in 2- {p}) into Sn- {q} (under T). Then

h(C)=C is a p.w.l. embedding of C in Sn and xi(5n —C) = l since

7Ti(2 —0 = 1. Since h(N(C, Sn)) is a regular neighborhood of C in 5"

under a subdivision of T, N(C, Sn)~h(N(C, Sn))~N(C, Sn). Note,

if C is the contractible ¿-complex given in Theorem 5, then one has

that 2 is in fact a combinatorial «-sphere (since NXl~In+1). Hence

2 « Sn under T and the result follows immediately.
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